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We study theoretically the energy and spatially resolved local density of states (LDoS) in graphene at high
perpendicular magnetic field. For this purpose, we extend from the Schrodinger to the Dirac case a
semicoherent-state Green’s-function formalism, devised to obtain in a quantitative way the lifting of the
Landau-level degeneracy in the presence of smooth confinement and smooth disordered potentials. Our general
technique, which rigorously describes quantum-mechanical motion in a magnetic field beyond the semiclassi-
cal guiding center picture of vanishing magnetic length (both for the ordinary two-dimensional electron gas and
graphene), is connected to the deformation (Weyl) quantization theory in phase space developed in mathemati-
cal physics. For generic quadratic potentials of either scalar (i.e., electrostatic) or mass (i.e., associated with
coupling to the substrate) types, we exactly solve the regime of large magnetic field (yet at finite magnetic
length, formally, this amounts to considering an infinite Fermi velocity) where Landau-level mixing becomes
negligible. Hence, we obtain a closed-form expression for the graphene Green’s function in this regime,
providing analytically the discrete energy spectra for both cases of scalar and mass parabolic confinement.
Furthermore, the coherent-state representation is shown to display a hierarchy of local energy scales ordered by
powers of the magnetic length and successive spatial derivatives of the local potential, which allows one to
devise controlled approximation schemes at finite temperature for arbitrary and possibly disordered potential
landscapes. As an application, we derive general analytical nonperturbative expressions for the LDoS, which
may serve as a good starting point for interpreting experimental studies. For instance, we are able to account
for many puzzling features of the LDoS recently observed by high magnetic field scanning tunneling spec-
troscopy experiments on graphene, such as a roughly Vm increase in the mth Landau-level linewidth in the
LDoS peaks at low temperatures, together with a flattening of the spatial variations in the Landau-level

effective energies at increasing m.
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I. INTRODUCTION

A. Quantum-Hall effect in graphene

The observation of an anomalous quantization of the Hall
resistance in graphene at high magnetic fields,'” related to
the massless, relativisticlike spectrum of low-energy elec-
trons on the two-dimensional honeycomb lattice, has trig-
gered much excitation in recent years, see Ref. 4 for a re-
view. Indeed, the experimentally measured Hall resistance
follows the Landau-level structure expected for massless
Dirac electrons,>® E,,= * ym#i(), in the clean case, with m a
positive integer and ().=2v /I the graphene characteristic
frequency given in terms of the Fermi velocity vy and of the
magnetic length Iz=\%c/|e|B (here e=—|e| is the electron
charge, ¢ the speed of light, and B the magnetic field
strength). The VB dependence of the characteristic frequency
Q). in graphene, to be contrasted with the linear dependence
of the cyclotron frequency w.=|e|B/(m*c) of more standard
two-dimensional electron gases (2DEGs) based on semicon-
ducting heterostructures (in this case, m" is the electronic
effective mass) described by Schrodinger equation, consti-
tutes one of the main signatures used so far in experiments to
exhibit the relativisticlike character of the massless charge
carriers.
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Also quite remarkable is that graphene displays a surface
opened to the outside world, providing a direct window to its
electronic excitations. This is a clear experimental advantage
of graphene compared to 2DEGs based on semiconducting
heterostructures, where the 2DEG is buried deep inside the
structure (typically 100 nm or more). Graphene thus offers
the opportunity to obtain precise insights into local physical
properties of quantum-Hall systems, such as the local density
of states (LDoS) via scanning tunneling spectroscopy (STS)
measurements. In contrast, such local probes experiments
have very poor spatial resolution in ordinary heterostruc-
tures, although some progress has been made recently, see
Ref. 7. This technical advantage will be certainly important
in the future to elucidate the relation between microscopic
inhomogeneities induced by various disorder types and mac-
roscopic transport properties of large samples. Various open
questions in this respect are the nature of the universal pla-
teau to plateau quantum phase transition,®'° or on a more
quantitative level the precise formation of wide Hall pla-
teaus. To pursue this goal, STS is one of the interesting avail-
able experimental techniques, and first experiments in
graphene at high magnetic field have been performed
recently.!"!2 Since this spectroscopic method gives direct in-
formation on the local electronic states, a better understand-
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ing of the LDoS, specific to the case of graphene at high
magnetic fields and in arbitrary potential landscapes (without
proceeding to disorder averaging), needs to be achieved. This
is the main aim of the present paper. A second important
aspect of our work is to obtain analytical solutions for a large
class of parabolic confinement models, and as a motivation
we now discuss the different types of potentials that can be
involved in the two-dimensional Dirac Hamiltonian.

B. Disorder types for graphene

Because of the multicomponent structure of the wave
function for graphene, several types of disorder can occur,
which we introduce here. The quasiparticle dispersion for
graphene has two Dirac cones (two “valleys”) at low ener-
gies. For a given valley, the Hamiltonian in the presence of a
perpendicular magnetic field has a matrix structure and is
written as

H0=vFa'-ﬂ, (1)

where vy is the Fermi velocity, o is a vector whose compo-
nents are the Pauli matrices o, and o, in the pseudospin
space, and the momentum operator is

=—iv, - SA(r). 2)

The vector potential A is related to the uniform transverse
magnetic field B via the relation VX A=B=Bz. For conve-
nience, we will omit both physical spin and valley indices,
thus assuming that the two valleys of graphene remain com-
pletely decoupled from each other and can be studied
separately.*

Quite generally, potential terms appear as either a random
scalar potential, a random Dirac mass, or a random vector
potential.® The Hamiltonian in presence of these potentials is
given by

H=H,+ V(r), (3)

where the function V(r) takes the general form

V= 2 o,V,r) (4)

P=8.X,),2

with o, the identity matrix in the pseudospin space, associ-
ated to the scalar potential term V(r). This contribution may
have many different physical origins: electrostatic confine-
ment potential, impurity random potential, and/or Hartree
potential resulting from the mean-field mutual Coulomb in-
teraction between the electrons. The diagonal but antisym-
metric term V,(r), associated to the o, Pauli matrix, de-
scribes the so-called random mass potential. This
contribution might be introduced by the underlying substrate
in single-layer graphene, while in bilayer graphene, such a
term can be produced in a controllable way by introducing
different electrostatic potentials in the two layers.'3 The off-
diagonal contributions coming as V(r)=[V,(r),V,(r)] can be
associated with a random vector potential, coming from the
spatial distortion of the graphene sheet in the third dimension
by ripples.*!# In what follows, all three possible types of
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disorder will be considered within the high magnetic field
regime.

C. Existing theoretical results for graphene
in various potential types

Let us first discuss various toy models of potentials (in a
magnetic field) that were studied in the recent graphene lit-
erature. Quite generally, within the Dirac equation fewer
models can be solved exactly than within its nonrelativistic
counterpart. For instance, the classic one-dimensional para-
bolic confinement model, as well as the circular parabolic
confinement model, are seemingly not analytically tractable.
For the 2DEG, the former is the well-known model to intro-
duce the edge states and explain the quantized conductance
in Hall bars. The latter is the basic model for quantum dots
and leads under magnetic field to the Fock-Darwin states
with discrete energies. Thus, only much simpler models can
be solved analytically for graphene, such as the uniform elec-
tric field.!>!® Progress can be achieved for circular hard-wall
confinement with either scalar'” or mass'® potentials but only
a solution in terms of special functions is then possible. For
parabolic and more complex potentials, fully numerical
methods have to be used, e.g., see Ref. 19. We will show in
this paper that the limit of negligible Landau-level mixing
allows one to solve analytically a large class of parabolic
models, providing new insights in the high magnetic field
regime.

Coming to the more complex question of disorder, even
less is actually known. Recent work devoted to the quantum-
Hall effect in graphene has proposed to take into account
disorder phenomenologically in the expression of Green’s
function by adding a constant imaginary part iI' in the
self-energy®?” but Hall quantization obtains only in the limit
where the energy rate I'—0. The LDoS in the vicinity of a
single pointlike impurity and in the presence of a strong
magnetic field has been studied recently.?"?? Various types of
disorders were also considered in Refs. 23 and 24 within the
self-consistent Born approximation. While this method may
be justified for short-range scatterers, it turns out® to be
inappropriate for a smooth potential in high magnetic fields.
Because a quasilocal picture takes place in the high magnetic
field regime,?® our calculation will be able to provide accu-
rate expression for the LDoS in smooth arbitrary potentials.

D. High magnetic field regime

The strategy to follow is best explained by starting to
discuss the specific nature of disorder for 2DEGs at high
magnetic field. For very clean heterostructures, the disor-
dered potential seen by the electrons is mostly smooth on
large length scales (several tens of nanometers), as the ma-
jority of impurities sit far away from the 2DEG. In contrast
to the low magnetic field regime, where the electrons explore
ergodically macroscopic regions of the sample, the high field
regime is characterized by cyclotron motion close to equipo-
tential lines of potential landscape V(r) with a narrow trans-
verse spread proportional to the magnetic length (which is
smaller than 10 nm at several tesla). The disorder landscape
felt by the electronic wave functions is therefore very smooth
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in that situation. We note that in graphene additional sharper
potential variations (such as atomic vacancies of the carbon
layer or local imperfections from the nearby substrate) can
occur, although these tend to be detrimental to quantum-Hall
physics by increasing the mixing of Landau levels. The cou-
pling to the substrate can however be removed by suspend-
ing graphene flakes or with a decoupled layer in epitaxial
graphene,!? resulting in very high mobility samples. In fact,
for both nonrelativistic 2DEGs and graphene, the essence of
the quantum-Hall effect lies already by considering smooth
potential variations only, which is the case to be followed
from now on.

Theoretically, this smooth disorder regime was shown to
be problematic at high magnetic field for standard quantum-
mechanical methods based on perturbative expansions in po-
tential strength.?’ In that case, the high magnetic field regime
is the correct starting point and is characterized by two dif-
ferent dimensionless small parameters: (i) 5/ £ associated to
the transverse spread of the wave function along the classical
guiding center R with [ the magnetic length and ¢ the typi-
cal length scale related to local variations in the potential; (ii)
lg|VV|/ hw, =156V Ehw, associated to Landau-level mixing
by local gradients |[VV| of the potential, introducing SV the
typical amplitude variations in the potential on the scale &,
and the cyclotron frequency w, in the 2DEG case.

Clearly, quantum mechanics calls for nonzero I3/ &, other-
wise the so-called semiclassical guiding center picture at /g
=0 emerges, giving at best a qualitative picture, and missing
important quantum effects such as level quantization, tunnel-
ing, or interferences effects due to the potential energy V(R).
The second parameter [5VV|/fiw, controls the degree of
Landau-level mixing so that Landau levels strictly decouple
at infinite .. Most previous works have considered either
limits separately (either [z— 0 or w,— =), and the necessary
formalism to incorporate both nonzero /; and finite w, was
developed for the standard 2DEG by the authors in Refs.
26-28, which will be extended in the present paper to the
case of graphene. This mathematical construction shows that
a local picture of the high magnetic field physics emerges in
terms of semicoherent-state Green’s function with a hierar-
chy of local energy scales®® ordered by powers of the mag-
netic length and successive spatial derivatives of the confine-
ment or disordered potential.

In the simplified, yet fully quantum limit of infinite cyclo-
tron frequency and nonzero /p, initial progress was made by
other authors in Refs. 29 and 30 for the 2DEG case, where it
was shown that Schrédinger equation acquires a unidimen-
sional character, offering an analysis for toy models of con-
finement or tunneling in the lowest Landau level. The gen-
eral structure of this limit was clarified in further
developments in the Green’s-function formalism?®3! and this
will be also examined in detail for graphene in the present
paper. Our methodology is based on the exclusive use of
Green’s functions, not wave functions, for the simple reason
that we project the quantum dynamics onto a semicoherent
representation with nonorthogonal states, forcing us de facto
to give up the wave-functions picture. Noticeably, because
the overcomplete character of the chosen representation al-
lows one to get rid of the Hilbert-space formulation inherent
to the traditional operator formulation of quantum mechan-
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ics, a unification of closed and open systems quantum me-
chanics is made possible here, i.e., one can get and treat
quantization and lifetime effects on an equal footing. An im-
portant application is the possibility to write down in the
2DEG case a unique Green’s-function expression which
holds for all cases of quadratic potentials. This derivation has
clearly proved that the appearance of lifetimes (expressing
the presence of decaying states, i.e., an intrinsic time asym-
metry) has for physical origin the instability of the dynamics
occurring at saddle points of the potential landscape; see Ref.
26 for a thorough discussion of this point.

In the graphene case, our calculation at large characteris-
tic frequency (). (or equivalently at large Fermi velocity)
brings important information, because, in contrast to stan-
dard 2DEGs, even simple models of parabolic confinement
for graphene do not possess an analytic solution at finite ().
However, we will show that the limit ),—+o0 is exactly
solvable for most quadratic potentials, allowing us to extract
the explicit discrete energy spectrum in case of several para-
bolic confinement models, and also, in principle, the trans-
mission coefficients in case of tunneling near saddle points.
Going beyond these toy models, our general formalism also
allows us to calculate in a controlled way the LDoS in an
arbitrary and possibly disordered potential landscape. Our
results will be discussed with respect to recent experimental
findings.!!:12

E. Structure of the paper and summary of results

First, in Sec. II, we shall investigate the free Dirac Hamil-
tonian in a transverse magnetic field, and introduce the
graphene vortex states, which are the building blocks of the
whole theory developed here. These states form an overcom-
plete family of semicoherent states, strongly localized
around arbitrary guiding center positions R, and encode the
cyclotron motion quantum mechanically.

In subsequent Sec. III, we introduce the Green’s function
for graphene vortex states and derive its general equation of
motion, Eq. (50), including Landau-level mixing processes.
The general connection to the real-space Green’s function is
also explicitly made in Eq. (54), allowing one to calculate, in
principle, any physical observable.

In Sec. IV, we show that the problem simplifies greatly in
the limit of negligible Landau-level mixing. First, for locally
flat potentials (away from saddle points or bottom of poten-
tial wells), we find that the mth Landau level acquires a
dependence on the position R, according to the simple for-
mula,

£,+(R) = 75(R) = V(RO ANm)* + [T, R, (5)

Here 0, (R) and 0,,(R) are renormalized effective potentials
that are simple functionals of the bare scalar and mass po-
tentials; for their definitions in terms of V; and V,, see Eq.
(64) and the associated discussion in Sec. III A. Second,
when curvature of the potential is included, we find that
simple analytic solutions for several parabolic models can be
obtained. In particular, for circular parabolic scalar potential
V(r)=(1/2)Uy(x*>+y?), the discrete energy spectrum (in
terms of Landau-level index m=1 and an extra quantum
number n, which is a positive integer =1) reads
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Epn= * hQ\m+ BUo(m+n+1/2) (6)

(we have assumed Qc>l,23Uo above). Apart from the well-
known anomalous Landau-level quantization with respect to
quantum number m, this result is very reminiscent of Fock-
Darwin states for standard 2DEGs with respect to the linear
dependence in the integer n. More interestingly, for circular
parabolic mass potential V,(r)=(1/2)Uy(x*+y?), the discrete
energy spectrum displays now an anharmonic form

U —
Epn=— BTO + QM) + BU[m+n+1/2])* (7)

that was not obtained to our knowledge. Generalization to
noncircularly symmetric parabolic potentials is also readily
obtained, as well as for the combination of uniform scalar
and parabolic mass terms (and vice versa), with detailed cal-
culations appearing in several appendices. However, we
show that potentials that combine sizeable spatial variations
in both scalar and mass terms are in general not analytically
tractable, even in the high magnetic field regime, except for
the lowest Landau level.

In Sec. V, we make explicit the connection of our formal-
ism to the so-called deformation (or Weyl) quantization,
which corresponds to the proper way of quantizing the dy-
namics in phase space. For two-dimensional problems in a
magnetic field, the vortex-state formalism is in fact perform-
ing a mixed representation of phase space in terms of the
two-dimensional coordinates of the center of mass together
with a discrete quantum number associated to Landau levels
while standard Weyl quantization would introduce a four-
dimensional description in terms of positions and momenta
of the electron. This latter choice is however unpractical for
the high magnetic field regime and this shows that the vortex
states are most robust in this regime. As should be expected,
in the limit of infinite frequency (w.— o0 for the 2DEG or
Q,— for graphene), Landau levels become fully decou-
pled, and the quantum dynamics reduces to a unidimensional
one in terms of the two vortex coordinates, acting as conju-
gate variables. An effective one-dimensional picture of mo-
tion is thus rigorously obtained, overcoming certain regular-
ization problems of the path-integral technique.?”

Finally, in Sec. VI, we provide generic expressions for the
LDoS in an arbitrary scalar or mass potential that can be
described locally up to its first-order derivatives (generalized
graphene drift states). Regarding recent experimental find-
ings, we show that: (1) positions, amplitudes, and widths of
the LDoS peaks qualitatively depend on the dominant type
(scalar or mass) of local potential, see, e.g., Eq. (74); (2) as
the tip scans the surface, the LDoS peak energy of the mth
Landau level follows the effective potential given in Eq. (5),
see Fig. 1, so that the resulting energy variations shrink with
increasing m, in agreement with the experimental findings
for graphene'? and standard 2DEG;’ (3) on the contrary, the
width of the LDoS peaks at. fixed tip position grows with
increasing m (roughly as ym), as observed in Ref. 11 for
graphene. Such a dependence is also expected for the ordi-
nary 2DEG.
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II. FREE HAMILTONIAN: VORTEX STATES
OF GRAPHENE

A. Vortex states for the standard 2DEG

Before investigating the case of graphene under magnetic
field, we briefly recall the vortex states for the case of the
nonrelativistic 2DEG. This introduction will be useful to
show that many physical and technical aspects of the 2DEG
can be directly transposed to the case of graphene (studied in
Sec. I B).

A single free electron of effective mass m* confined in a
(xy) two-dimensional plane and subjected to a uniform mag-
netic field pointing in the perpendicular direction B=BZ is
described by the Hamiltonian,

n 1m+1e
HzDEG=%=7- (8)

Then, the eigenvalue problem H,ppgV=¢WV leads to the
well-known quantization of the kinetic energy into Landau
levels,

sm:<m+%)ﬁwc 9)

with the cyclotron pulsation w,=|e|B/m*c=f/m*[} and m
=0 a positive integer (here Iz=\Ac/|e|B is the magnetic
length). It is important to note here the large degeneracy of
the Landau energy levels g,. Indeed, for the motion of an
electron in the two-dimensional plane, one expects at least
two quantum numbers since there are two degrees of free-
dom. The degeneracy means that there is a great freedom in
the choice of the second (degeneracy) quantum number, or
equivalently, in the choice of a basis of eigenstates W. Con-
sequently, there exist in the literature different ways to derive
the energy quantization, Eq. (9). Eigenstates characterized by
a peculiar symmetry of the (gauge-invariant) probability den-
sity |W|? are preferentially chosen in many contexts. For in-
stance, the Landau states, with a conserved momentum as the
degeneracy quantum number, are translationally invariant in
one direction.’? Circular eigenstates characterized by a rota-
tion invariance around the origin®3 are also well known and
often used. It is worth stressing that the real difference be-
tween the Landau states and the circular states is not the
gauge because both kinds of states can be obtained in any
gauge.>* The real difference is in the choice of the gauge-
invariant quantum numbers, which are intimately related to
the symmetry of the probability density |W|?.

Importantly, both Landau and circular eigenstates do not
reflect the symmetry of the cyclotron motion around an arbi-
trary point R=(X,Y) in the (x,y) plane so that the consider-
ation of the classical limit with these sets of states is rather
tricky. Since they do not correspond to the classical picture
of the motion, it is difficult to appreciate the wave-particle
duality. By imposing that the probability density [W¥|? of the
eigenstates has the same symmetry as the cyclotron motion,
i.e., is a function of |[r—R| only, we get?’ the so-called vortex
states, given in the symmetrical gauge (A=BZ Xr/2) by
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1 x=X+ily=Y) |"
\Pm,R(r) = [ |: — :|
IgN27m! V2Ip
(x-X)2+(y-Y)?+2i(yX -xY)
X exp| — 5 .
41y
(10)

For practical convenience, we shall now use the Dirac
bracket notation by writing ¥, g(r)=(r|m,R). Eigenstates,
Eq. (10), of Hamiltonian (8), associated with energy quanti-
zation, Eq. (9), are characterized by the set of quantum num-
bers |m,R), where m is a positive integer related to the quan-
tization of the circulation around the vortex and R=(X,Y) is
a continuous quantum number corresponding to the vortex
location in the plane [note with Eq. (10) the “vortex”-like
phase singularity at r=R for m=1, which justifies the cho-
sen denomination for the set of states]. These localized wave
functions clearly encode the classical cyclotron motion
around the guiding center R quantum mechanically. The vor-
tex states form a semiorthogonal basis with the overlap,

<m1,R1|m2’R2> = 5m1,m2<R1|R2>’ (11)
where
R,-R,)>-2iz-(R; X R
<R1|R2>=exp[—( R 4;2 R R (12)
B

An important property is that the states, Eq. (10), present the
coherent character with respect to the degeneracy quantum
number R, i.e., they satisfy coherent states algebra. Note that
these states are however eigenstates of the free Hamiltonian
associated to the Landau-level index m, and form more pre-
cisely a semicoherent basis with respect to the quantum num-
bers (m,R). In particular, they also obey the following com-
pleteness relation:

+00

d°R
Py 20 lm,R)(m,R| = 1. (13)
B m=|

According to this relation (13) and general unicity properties
of the decomposition onto coherent states,”’ it is possible to
expand arbitrary states or operators in the vortex-state repre-
sentation. Hence, despite being nonorthogonal, the set of
states |m,R> with m=0 does form a basis of eigenstates, as
the Landau and the circular states.

Besides providing a clear quantum mechanical dual of the
classical cyclotron motion, there are several good reasons to
prefer specifically the vortex states over an orthogonal set of
eigenstates to study the process of lifting of the Landau-level
degeneracy in the presence of a smooth arbitrary potential.
First, in contrast to the Landau states or circular states, the
vortex states do not impose a symmetry to the degeneracy
quantum number, and thus permit a great adaptability to the
spatial variations in the local electric fields, coming from
either random impurity donors, confinement potentials, or
macroscopic voltage drops (in a nonequilibrium regime).
This property leads to advantages in terms of computability
since it is possible in the vortex representation to calculate
and classify Landau-level mixing processes in a simple and
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natural manner (this will be illustrated in Sec. III A). Second,
at a more fundamental level, the vortex states are expected to
be quite insensitive to any kind of smooth perturbations,
since the quantum number m has a purely topological origin
in the vortex representation (for the Landau states or circular
states, the quantization of the kinetic energy comes either
partially or entirely from the condition of vanishing of the
wave function at infinity, what makes them much less robust
to perturbations as a result of their nonlocality). Owing to
this quantum robustness, the vortex states are thus naturally
selected by the dynamics in the presence of a smooth poten-
tial with an arbitrary spatial dependence. They appear to be
much more stable than their superpositions (for instance, the
Landau states) since they are the only states surviving under
the action of such an interaction potential without any inter-
nal symmetry. Interestingly, the vortex states are also the best
states to describe the transition from quantum to classical.
Despite being fully quantum, they thus encode de facto clas-
sicality properties and insensitivity to openness of the sys-
tem. Therefore, they provide the best playground to under-
stand the mechanisms of irreversibility, decoherence and
dissipation in high magnetic fields. We will comment on this
point in more detail later, in Sec. IV D.

B. Graphene vortex states

We now come for good to graphene, which is described in
the absence of potential by Hamiltonian (1). By searching
the wave functions under the spinorial form

«ﬁ:(”) (14)

w
with
H,W=EV, (15)

we get the following equations:

(I, = ill)w = ;u, (16)
N A E

(I, + il u = —w (17)
Uf

with E the energy eigenvalue. Getting rid of the component u
we get the Schrodinger-type equation for the component w,

A E\?
(Hx+iHV)(Hx—iHy)w=(—) w. (18)
) vp
Using that
A B h?
[Hx,l'[y]=—ih@=—i—, (19)
c Iy

we find that Eq. (18) reads
12w =Ew (20)

with

045421-5



THIERRY CHAMPEL AND SERGE FLORENS

2
E:(E) +ﬁ—2 (21)

U lB

By posing E=2m*e in Eq. (20), where & has the dimension
of an energy, we directly recognize the eigenproblem for a
free 2DEG under magnetic fields discussed in the former
section. This mapping shows that there is also a great free-
dom to choose a basis of eigenstates in the case of graphene.
In the following, we introduce the analog of vortex states,
Eq. (10), for graphene.
From Eq. (9), we directly deduce that

E=Q2m+ )R, (22)

Therefore, we get that the energy eigenvalues of the
graphene Hamiltonian are

E,\= N \rEll}—F = )\\e’%ﬁﬂc, (23)
B

where A is a band index, which is equal to =1 if m=1, and
0 if m=0. We see that the energy levels are no more equi-
distant in energy and that the characteristic energy for

1 1

<m1,R1,)\1|m2’R2,)\2>=

VE+ N[V
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graphene reads %), B instead of #w, B for 2DEGs. The

component u of the spinorial wave function ¥ is straightfor-
wardly obtained from the knowledge of the component w by
using Eq. (16). The corresponding normalized graphene vor-
tex states are thus

= 1 ()\\Pm—l,R(r) > (24)

\I,m (r)=’,= .
S ONI N A (NS

Within the Dirac notation, the set of vortex quantum num-
bers we shall consider for graphene takes therefore the form

m, R,\) ! (Mm_ 1’R>> (25)
m’ t = . .
VI+ A\ imR)

The label N which characterizes the spinorial structure of the
eigenvectors appears here as an additional quantum number
with respect to the 2DEG.

Using the semiorthogonality property, Eq. (11), of the vor-
tex states, we can easily check that the graphene vortex states
present the same property as their “nonrelativistic” counter-
parts. Indeed, we have

(M("ﬁ - 1,R1|> . ()\2|m2— 1,R2>)
—i<m1,R1| i|m2,R2>

)\)\2+1

=5, L2t )5 (RR)S 26
B e aed ELALI ST 26)

For convenience, in the next section we shall condense the full set of quantum numbers |m,R,)\> into the single notation
|v). Therefore the sum over quantum numbers » will stand for

s - f R 27)

27Tle =0 )\

It is finally straightforward to prove that the set of graphene vortex states |, R,\) obeys a completeness relation, which reads

d*R < 2 s L ()\2|m —1,RY(m—1,R| —i\m—1,R)m,R] )
27l v 1+ N\ iXm,R)m - 1R| |m,R){m,R|

&R <
— >

277le =0

AV

(|m ,R)(m,R| 0 ) (1 o) -
0 |m,R)(m,R| 01 28
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where we have used the completeness relation (13) satisfied
by the vortex states.

III. GENERAL FORMALISM FOR A SMOOTH
POTENTIAL

A. Matrix elements of the potential

In order to investigate the effect of a smooth potential
under magnetic field, we shall naturally project the different
contributions of Hamiltonian (3) in the graphene vortex rep-
resentation. Although being basic, this projection sheds al-
ready interesting light on the different processes at play and
shows the essential differences between the different kinds of
potentials that may be encountered in graphene, see Eq. (4).
Using Eq. (25), the matrix elements of the diagonal part of
the potential (i.e., associated to scalar and mass potentials)
can be written as

<V1|Vdiag|V2> =[(L+ NI+ [NT2
X {)\l)\2<ml - 1’R1|Vx+ Vz|m2_ 1’R2>
+(m, Ry |V, = V. [my,Ry)} (29)

The off-diagonal terms of the potential (i.e., the random vec-
tor potential contribution) give rise to the following matrix
elements:

(Wi Voslvo) =il (1 + N (L +[N)T72
X {)\1<m1 - 1:R1|Vx_ iVy|m25R2>
= No(m, RV, +iVimy = 1,Ry)}. (30)

We have shown in Ref. 27 that it is possible to evaluate
exactly the matrix elements of a smooth function V(r) in the
vortex representation [provided that V(x,y) is an analytic
function of both x and y] and write them as a series in pow-
ers of the magnetic length /g,

<ml’R1|V|m2’R2> = <R1|R2>Um];m2(R12) (31)

with R12=[R1+R2+i(R2—R1) X i]/2 and

Uml;mz(R)=fdzn‘PLI,R(n)\I,mZ,R(n)V(") (32)

+00 .
lg \
=2 (—2) s (R). (33)
j=0 \'¥
J )
)= 5, et s

k=0 Nmylmy! k!(j—k)!
X (dy + idy) (dx — idyY *V(R). (34)

Clearly, the use of an analytical expansion around the com-
plex point R, in Eq. (31) puts some constraints on the types
of potential that can be considered in the present formalism.
We emphasize that relation (31) holds for any physical po-
tentials V (which are necessarily smooth functions of the
space variables). In contrast, pointlike (i.e., zero-range) po-
tentials involving Dirac delta functions which represent toy
models simulating short-range potentials cannot be treated
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within the present formalism. If the magnetic length /g cor-
responds to the shortest length scale [here, basically, I has to
be compared with the characteristic length scale of spatial
variations in the function V(R), see Egs. (33) and (34)], we
see that we have naturally ordered the different contributions
to the matrix elements by their order of magnitude in high
magnetic fields.

At leading order (I;—0), we get from Egs. (29)—(34) for
coinciding vortex positions R;=R,=R,

1| Vaiagl v2) = 8y [ 85,0, Vi(R) = 8y 1\, V-(R)]. (35)

We remark that in the limit /z— 0 the diagonal elements V|
and V, of V do not introduce a mixing between Landau lev-
els. For smooth functions V, and V, we get in the same limit
IBHO,

(0| Vostlva) = =il (1 + N DL+ N T2
X {)\25m1,mz—l[vx(R) + IVV(R)]

- )\léml—l,mz[vx(R) - IV‘(R)]} (36)

We note with Eq. (36) that the off-diagonal elements V, and
V, do mix adjacent Landau levels already at leading order in
Iy, in contrast to the diagonal elements V, and V, of V. This
difference clearly calls for a different treatment of the diag-
onal and off-diagonal parts of the total potential V. Off-
diagonal contributions can be treated perturbatively at high
magnetic field by assuming that V, and V, are small in am-
plitude in addition of being smooth functions at the scale /5.
Such a constraint on the amplitude can be relaxed in the
treatment of the diagonal contributions of V.

The next (subdominant) contributions of order I to the
matrix elements of Vy;,, are proportional to

By, (O + 1) N V{(R) = V,(R)]
AN [V,R) + V(R T+ el =2),  (37)

where the notation c.c.(1+2) means taking the complex
conjugate and exchanging the indexes 1 and 2 of the former
expression. This contribution induces a mixing between both
adjacent Landau levels and band indices A. Moreover, the
mixture of positive- and negative-energy components stems
from both components V and V, of the potential energy. It is
interesting to note that for a large Landau-level index, the
mixture arising purely from V; (i.e., taking the mass term
V,=0) gets negligible when A\ |\,=—1. For instance, when m,
and m,>1, we have

Vi + 1+ N Aoy = V(142 \y) (38)

for the component &, .1, of the matrix elements, Eq. (37),
associated with V. On the other hand, the band mixing be-
comes significant for m; and m, close to 0. Specific signa-
tures resulting from this interband mixing, such as Zitter-
bewegung (or trembling motion) in a magnetic field, have
been discussed in the literature.>>=” By looking at next-order
contributions in lé for the matrix elements, we note that in-
terband mixing occurs also with the second derivatives of a
pure scalar potential V; without mixing the Landau levels.
These mixing processes will be analyzed further in Sec. IV.
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B. Green’s-function formalism

The nonorthogonality of the graphene vortex states pre-
venting us to build a wave-function perturbation theory, we
shall instead use a Green’s-function formalism to get a more
quantitative insight on the effect of a smooth potential, fol-
lowing Refs. 26 and 28. Although the derivation of the equa-
tions of motion for the graphene Green’s function is very
similar to that for the 2DEG Green’s function, we shall nev-
ertheless describe the principal steps with some detail here,
in order to make this paper self-contained (we shall, how-
ever, not reproduce the very technical details).

Retarded and advanced Green’s functions are, respec-
tively, defined as

GR(x1.x0) = = i6(t, — ) {h(x)), ¥ (x2)}). (39)
G (x1.x) = i60(t, — 1)){hlx)), 4 (x2)}). (40)

where {,} means the anticommutator and 6 the Heaviside step
function [i.e., 8(t)=0 for <0 and 6(1)=1 for t>0]. The
averages are evaluated in the grand-canonical ensemble. The
Green’s functions relate the field operator ¢(x;) of the par-
ticle at one point x;=(r;,7;) in space time to the conjugate
field operator #(x,) at another point x,=(r,,z,). The field
operators (x;) and ¢'(x,) are expressed in terms of the

eigenfunctions W ,(r) and eigenvalues E, as

Plx) =2 ¢, W (r))e it (41)

¥ (%)) = 2 I (et (42)

where c;‘; and c, are, respectively, the creation and destruc-
tion operators.

As a basis of states, we shall then use the graphene vortex
states |vy=|m,R,\) which are eigenstates of Hamiltonian H,,
[Eq. (1)]. It is worth noting that, although these states |v) are
nonorthogonal, the associated creation and destruction opera-
tors cf} and ¢, obey the usual algebra with the anticommuta-
tion rules {C'L1 ’C;Ez}={CV1 ,c,,2}=0 and {ch ,cj;z}= S,

Completeness relation (28) allows us to express
the Green’s function in the graphene vortex re-
presentation,  which we note  GFA(v,t;15,1)
=GR (m,,R|,\,t;:m5,Ry, Ny ,1,). Transposing its defini-
tion originally made in terms of the electronic coordinates
(r,7) into the vortex language, the latter Green’s function
gives the probability amplitude for a vortex with circulation
m, and band index \; that is initially at position R; at time ¢,
to be at point R, at time #, with a new circulation m, and a
band index \,. After Fourier transformation with respect to
the time difference t=t,—1,, the Green’s function (denoted by
G,) corresponding to Hamiltonian H,, [i.e., Hamiltonian (3)
with V=0] are written in the energy (w) representation as

5m1,17125)\1,)\2<R1|R2>

- + ;0%
w=-E, \, *i0

RN

Gy (v3vy) = (43)

Retarded and advanced Green’s function in the presence
of the smooth potential V are obtained from Dyson equation,
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which takes the following form in the v representation (we
again considered the Fourier transform of Green’s function
with respect to time difference)

(- Epn * i0HGRA (v ;1)

= (| + 2V, ., G* (vsim). (44)

3

Here the general matrix elements V., =(v|V|»,)
=(R, |R2>Um|,}\1;n12,)\2(R12) are given by expressions
(29)—(34). For V#0, the graphene vortex Green’s function is
generally no more diagonal with respect to the quantum
numbers m and A, and the mixing between the different
quantum numbers depend on the characteristic properties of
the potential V. However, it turns out that, as a result of the
coherent states character with respect to vortex position R
encompassed within overlap, Eq. (12), the propagation of the
graphene vortex Green’s function with respect to vortex po-
sitions R and R, is constrained to necessarily take the form

G(v13v) = (R R, & oy n,(R12)s (45)

similarly to the matrix elements of the potential [see Eq.
(31)]. Such exact dependence, Eq. (45), can be derived from
Dyson Eq. (44) in the same way as done in Ref. 28. Remark-
ably, it implies that the nonlocal graphene Green’s function
G(v,;v,) will be entirely determined once it is known at
coinciding vortex positions R;=R, =R, and this result holds
irrespective of the potential V. It is then sufficient to consider
Eq. (44) for coinciding vortex positions. Because the deriva-
tion is the same as for the 2DEG, we briefly outline here the
last step leading to the final equation of motion governing
the function g, .m,x,(R) and refer the reader to Sec. II of
Ref. 28 for the mathematical details. The nonlocal dependen-
cies of the functions G(v3;1,) and V, ., on the vortex posi-
tions which are known according to relations (31) and (45)
are exploited to evaluate the integral over the continuous
variable R; on the right-hand side of Eq. (44). This integral
then transforms into a series expansion in powers of /5. We
obtain that Dyson equation for the retarded graphene vortex
Green’s function g(R) (from now on, we drop the R upper-
script associated to retarded) corresponding to Hamiltonian
(3) reads

(w - Eml,)\l + i0+)gml,)\l;m2,)\2(R)

= 5m1,mz5)\1,)\2
1\ 1
+2 <?) _' E (&X_iaY)kvml,)\l;mg,)\g(R)
k=0 \N2/ k', o
X (dx +10y) Gy nyimyn,(R) (46)

with E, \=\E,,=\i\2muvp/ L.

Another important aspect of the change in function (45),
which appears clearly with the form (46) of Dyson equation
and with expressions (33) and (34) for the matrix elements of
the potential taken at coinciding vortex positions, is that the
nonanalytic dependence of the nonlocal graphene vortex
Green’s function G(v;;v,) on the magnetic [z has been en-
tirely extracted [in formula (45), this nonanalytic dependence
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is only contained in the overlap (R, |R,)]. In other terms, the
function g(R) is obviously analytic in Iz and thus well be-
haves in the semiclassical limit of zero magnetic length
(15— 0). This property can be used to solve Eq. (46) order by
order in powers of [ and thus to provide a semiclassical

expansion of the graphene vortex Green’s function
gml,)\l;mz,)\z as
+00 .
g\
— B0
gml,}\l;mz,)\z - Zl) < \'5) gml,)\l;mz,)\z- (47)

Because the series, Eq. (47), is then only asymptotic in na-
ture (the obtained solution holds in the limit /5 — 0 but is not
controlled at finite /5), we aim here at solving directly and
nonperturbatively in [z Dyson Eq. (46).

For this purpose, we have found in Ref. 26 that it is very
convenient to introduce the simultaneous changes in func-
tions,

- (2
gml,}\l;mz,)\z(R) =e UBM)ARgml,}\l;mz,)xz(R) > (48)

2
~ - A
Uml,)\l;mz,)\z(R) =e (18/4) Rvml,)\l;mz,)\z(R)’ (49)

where the symbol Ap means the Laplacian operator taken
with respect to the vortex position R. After substitution of
these expressions (48) and (49) into Eq. (46), we get a new
equation for the unknown function §m1,>\1;m2,>\2(R) with a
higher-order differential operator than the one appearing on
the right-hand side of Eq. (46),

(0) - Eml,)\l + i0+)gml,)\l;m2,)\2(R) = 5)\1,)\25m1,m2

+ E 5m1,)\1;m3,)\3(R) *gm3,}\3;m2,)\2(R)a (50)

ms3,\3

where the symbol * stands for the bidifferential operator
defined by

é(r,r’,w):f d’R DI ()\1)\2‘1%2—1,1{(1' ¥, -1 R(F) _l}\I\Irmz,R(r )’\II"II_LR(I'))E—(lz/Z)AR

27l

Bmy, Ny my,\y

i)\Z\II;Z_LR(r’ )‘IfmlyR(r)
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Ge o <.
* = exp|:iEB((9x(;Y— ayax):| . (51)

The arrow above the partial derivatives indicates to which
side the derivative acts. Note that the passage from Eq. (46)
to Eq. (50) is more straightforward by going to Fourier space
(see Appendix A of Ref. 26). It is worth mentioning that, by
starting from the other Dyson equation (i.e., formally G
=Gy,+GVG,) and following the same steps as detailed pre-
viously, we can derive a second equation satisfied by the
function g,

((’—) - Emz,)\z + i0+)§m|,)\l;m2,}\2(R) = 5)\1,}\25m1,m2

+ E gml,)\lgm3,)\3(R) * 5m3,)\3;m2,)\2(R)- (52)

m3,\3

The particular form3® of exact Eqs. (50)—(52), reminiscent of
the so-called star product, will be further used and com-
mented in Secs. IV and V.

In order to compute local physical observables such as the
local density of states, we need to express Green’s function
in terms of the electronic positions r. The electronic Green’s
function is a 2 X2 matrix in the pseudospin space and is

defined as G(r,r’)=(r|G|r’). At a practical level, it is useful
to directly relate the nonlocal electronic Green’s function to
the local graphene vortex Green’s function g, x .m,,(R) (at
coinciding vortex positions) or alternatively to the modified
vortex Green’s function &, \ .m,,(R). First, the electronic
Green’s function can be straightforwardly linked to the non-
local graphene vortex Green’s function G(v,;,) through a
change in representation which is performed by using twice
completeness relation (28). Then, using Eq. (45) and follow-
ing the calculations made in Ref. 28 for the 2DEG, we get
the following relation:

gl111,}\1;m2,}\2(R)
VI+ NI+ ]
(53)

‘P;ky,z,R(r ' )\I,ml,R(r)

where the functions W, r(r) correspond to the so-called vortex wave functions written in Eq. (10). Inverting expression (48),

2
. .o, _ I /4)A ~
i.e., writing gmpM;mst(R)_e( BORG m N pimyhy

(R) and inserting this result into Eq. (53), we get after integrations by parts (so

that the operator involving the Laplacian acts on the product of wave functions rather on the local vortex Green’s function)

d’R

2771%;

(A;(l‘,l",w)=f > > e_(llz?/“)AR(

my,Ny my,Ny

Because the functions §m1,>\1 may depend on A\; and \,,

;mzy}\z
the electronic Green’s function G(r,r’) possesses, in gen-

)\1)\2\1':12—1,R(r,)q,ml—l,R(r) _i)\I‘PZZ,R(r,)XPmI—I,R(r)) §ml,)\l;m2,)\2(R)
N, 1 r(T) W, R(T)

VI 4+ VT + N

(54)

q’fnz,k(r’)q’ml,R(l’)

eral, off-diagonal elements. The above equation is a central
one because it shows that any physical observable can be
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computed from the knowledge of the local vortex Green’s
function g, .m,,(R).

IV. HIGH MAGNETIC FIELD REGIME
A. Regime of negligible Landau-level mixing

While Egs. (50)—(52) can, in principle, be considered for
any magnetic fields, we shall investigate here the regime of
high magnetic field only, for which Landau-level mixing can
be safely neglected. This regime can be reached under rea-
sonable conditions (i.e., for fields on the order of 1 T or
higher) provided that the potential landscape is sufficiently
smooth. Indeed, Landau-level mixing processes are de-
scribed within Eq. (50) by the matrix elements Uy Ay
with m; # ms. From the expressions of the matrix elements
of the potential coupling adjacent Landau levels calculated in
the vortex representation in Sec. III A, we can formulate a
clear quantitative criterion for neglecting Landau-level mix-
ing due to the diagonal contributions of the potential V in
graphene,

1o|VRV(R)| < (Vim + 1 — \m)AQ), . (55)

In graphene and for a field of 5 T, we have AQ.=fi\2v;/ 15
~80 meV and [z=11 nm. Recent experimental STS mea-
surements of the spatial dispersion of Landau levels in epi-
taxial graphene'? give at most typical linear variations in
8V=5 meV on length scales £=20 nm. Thus [5|VV|/% (.
=<1z6V/ &R, =0.03, a very small number indeed, so that the
limit of negligible Landau-level mixing is well obeyed. We
shall furthermore suppose that the Landau-level mixing pro-
cesses due to the off-diagonal part of V are small. According
to Eq. (36), this implies

IV, ,(R)| < (Vm + 1 = \m)AQ,. (56)

Under inequalities (55) and (56), Landau-level mixing pro-
cesses due to the spatial variations in the scalar potential V|
and of the random mass V, or to the spatial fluctuations (V,
and V,) of the vector potential are small and can be ac-
counted for perturbatively on the basis of Eq. (50).
Henceforth, we shall concentrate on the main relevant
processes occurring at high magnetic field in a smooth po-
tential. In this regime, the Landau-level degeneracy is prin-
cipally lifted by the presence of both the potentials V, and
V., which give rise for m=1 to the following diagonal (m,
=m,=m) matrix elements in the vortex representation,

vm;}\ 1 ;}\Z(R) = 6m 1 ,mzvm 1M ;m2,}\2(R)

=3 unR+8 L unR),  (57)

where the diagonal and off-diagonal components of the po-

tential matrix elements in pseudospin space, respectively,
read

i R) = 3 [ LV, V.o

W, vV + V()T (58)
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+ YN
L (W {vx(R) VR

+ " [V,(R)+ VZ(R>]}. (59)
m+j

To write down expressions (57)—(59), we have used Egs.
(29) and (32)—(34). We notice that even a scalar potential V
introduces a coupling between the bands A== for m=1
through its nonlocal differential contributions arising with j
>1. For instance, a quadratic scalar potential generically
mixes the positive and negative energy components, even in
the absence of a mass term (V,=0). The case m=0 has to be
treated as a special case since there is only one band (A\=0
necessarily). The matrix elements for the lowest Landau
level m=0 read

vo(R) = J Vo r(p[V(n) - V.(5)] (60)

SL(BE Y
=2j—, 5 A | [Vi(R) - V,(R)]. (61)
j=0J*

We have seen previously that Dyson Eq. (50) is greatly
simplified when considering modified matrix elements
5m,7\1;m,}\2(R)=e_<112g/4)ARvm,)\l;m,)\2(R)5 which constitute the ef-
fective potential in Landau level m. Using results given in the
Appendix B of Ref. 26, we get the action of the exponential
differential operator onto the product of two vortex functions
with identical Landau level m and positions r,

K,(R—r) = U595, o (r)]? (62)

1 g e AR-DY

71'm!1129 as™

(63)

1+s )

with A;=(1-s5)/(1+s). Thus, the diagonal and off-diagonal
effective potentials (in pseudospin space) read for m=1,

o) = 1 [ ik (R )V, V()

* Ky i (R=m)[Vi(m) + Vo ()]} (64)

We emphasize that formula (64) is nonperturbative in /5 and
possibly applies for potentials V; and V_ with sizeable varia-
tions at the scale of /3. The effective potential in the lowest
Landau level is also readily obtained as

Uo(R) = J d*nKy(R - p)[V(m) - V(9] (65)

Obviously, we find that the modified Green’s function be-
comes also diagonal with respect to the Landau-level quan-
tum number at large magnetic field (yet at finite magnetic
field),

gml,)\l;mz,)\z(R) = 5ml,m2§ml;)\1;)\2(R)’ (66)

and is determined for m=1 by Dyson equation,
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(0= Epp, + 1098 0, (R) = 8\ o, + T(R) * Gy 0, (R)
+5,(R) * Zn o, (R)  (67)
and for m=0 by
(@+i07)gy(R) =1+ 0p(R) * g(R). (68)
The other Dyson Eq. (52) generates the different equation,
(0= Epn, + 1058 0, (R) = 8\ o, + &mn o, (R) * 7,,(R)
+ B, (R) % 5, (R)  (69)
for m=1, and
(0 +i0%)gH(R) = 1 + go(R) * 7(R) (70)

for the lowest Landau level m=0.

B. Locally flat potentials

Now, we aim at solving Egs. (67)—(70) at leading order,
which is vindicated when the potential is locally flat, i.e.,
when potential curvature is small. This calculation includes
the case of one-dimensional potentials (i.e., globally flat po-
tentials), for which the solution presented below is exact.
Indeed, as is clear from its explicit expression (51), the
*-bidifferential operator involves derivatives in two orthogo-
nal positions. In case where the potentials V(R) and V_(R)
are purely one-dimensional potentials depending on the same
coordinate, the function g(R) will also only depend on the
same and unique variable, so that the x product between the
functions 0" and g reduces to the standard product of func-
tions. In case of arbitrary spatial varying two-dimensional
potentials, this constitutes a good approximation as long as
temperature is higher than the energy scales associated to
local curvature terms, see Sec. IV D for a general discussion.
Dyson equation then is trivially solved, as the system of
differential Egs. (67)—(70) transforms into a system of purely
algebraic equations. Taking the difference of Egs. (67) and
(69), we get for m=1 the relations between the different
components of g,

gm;+;—(R) = gm;—;+(R)» (71)

5 - _ Em;+ ~
gm;—;—(R) = gm;+;+(R) 217;1(R) gm;—;+(R)- (72)

After simple algebra, we directly obtain the solution
1
[w=§,.(R)+i0"][w-§, (R)+i0"]
X{lo-10,,(R) + Em,xl]5xl,>\2 +0,,(R) 5>\1,_>\2}
(73)

gm;)\|;)\2(R) =

with the poles (corresponding to the renormalized Landau
levels) giving the effective energies,
2 r— 12
&+ (R) = 5,,(R) = VE; +[0,(R) . (74)

m

For m=0, the Green’s function is characterized by a single
pole and reads
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1

R =m0

(75)

where &(R)=0,(R).

Equation (74), with the explicit expression for the renor-
malized potentials given in Eq. (64), provides the leading
result for the local Landau-level energy in arbitrary poten-
tials of diagonal type (i.e., scalar or masslike). This expres-
sion of course includes the case of a purely unidimensional
(i.e., globally flat) potential as an exact particular solution,
but is a very good approximation for smooth disordered po-
tentials, which can be used to analyze experimental STS re-
sults, as we discuss in Sec. VL.

C. Locally curved potentials

This section presents the resolution of Dyson equation at
next to leading order by extending the above calculation of
the local vortex Green’s function to the incorporation of the
effects of geometrical curvature in the potential landscape. It
has therefore a twofold purpose. First, it provides a crucial
refinement of the previous expression (73), that includes im-
portant quantum effects such as quantization of energy levels
or tunneling associated to the potentials V, and V_, which are
clearly missed in the leading order guiding center Green’s
function. Smaller energy scales associated to these physical
processes are now accessible and the final expression will
apply to arbitrary smooth potentials that are locally curved.
These important aspects are discussed in more detail in Sec.
IV D. Second, in the special case of purely quadratic poten-
tials (which thus have a global constant curvature), the cal-
culation provides essentially the exact Green’s function,
from which one can gain interesting insights on the physics
of confinement or tunneling in graphene. We thus obtain ana-
lytically the quantization spectra of parabolic quantum dots
and show that the structure of energy levels qualitatively
depends on the type of confinement (electrostatic or mass
type). We henceforth assume that the diagonal potentials are
locally well described up to their second-order spatial deriva-
tives.

1. Lowest Landau level: Solution with both curved
scalar and mass potentials

We start by considering the lowest Landau level m=0,
which is the simplest case to solve, as band indices are not
involved. In that situation both locally curved V(R) and
V.(R) can be solved altogether (this is not the case for higher
m=1 states, as will be discussed in the next paragraphs).
Actually, Dyson Eq. (68) for the lowest Landau level is for-
mally equivalent to the equations obtained?® for the 2DEG,
as the electrostatic potential V(R) for the 2DEG is just for-
mally replaced by the combination V(R)-V.(R) for
graphene. Working in the next to leading order, i.e., keeping
local curvature terms of order /; in the *-bidifferential op-
erator, Eq. (51), we can directly transpose the solution of
Ref. 26 to the graphene case (for the method, see also Ap-
pendix B of the present paper), which reads
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+ il (R) Yo (R)J-(1)]
go(R)=-1i f dt il &(R)+i0"] (76)

0 cos[\yp(R)1]
with
(1) = %tan{x Yo R)1]. (77)

The parameters y,(R) and 7,(R) in Egs. (76) and (77) are
geometric coefficients characterizing the local effective po-
tential landscape 0,(R) in the lowest Landau level,

4
W) = G55 - i (78)

/A
7(R) = ?[(ﬁiﬁo)(ﬁygo)z + (y0) (9xDy)?

= 2(dxdy00) (dx0)(dyDp) IR - (79)

The coefficient y,(R) is directly proportional to the Gaussian
curvature of the surface defined in the three-dimensional
“space” XYZ by the equation Z=0,(X,Y). Its sign reflects the
local topology of the effective potential: y,(R)>0 indicates
a locally elliptic potential with the presence of a local extre-
mum (maximum or minimum) while y,(R) <0 corresponds
to a locally hyperbolic (or saddle-shaped) potential. At the
borders between the regions with curvatures with opposite
signs, the potential is locally parabolic (the lines where the
Gaussian curvature is zero are consequently called parabolic
lines). For a complex disordered effective potential land-
scape, one expects that surface regions with positive and
negative Gaussian curvature alternate. Note that both cosine
and tangent trigonometric functions in Egs. (76) and (77)
transform into their hyperbolic counterparts in the case
vo(R) <0. Equation (76) thus provides a general approxima-
tion scheme in the lowest Landau level in the presence of
arbitrary scalar and mass potentials that are locally well de-
scribed by local curvature coefficients, Egs. (78) and (79).

Now, in the particular case of purely quadratic scalar and
mass  potentials, ie., V(R)-V.(R)=V—V o+ %[(R
-Ry)-Vi*(V,~V,), with R, chosen as the single point
where the potential gradient vanishes, expression (76) yields
the exact Green’s function of the problem. In that situation,
the parameter 7, in Eq. (78) becomes R independent,

l4
Yo= f{&i(vs ~ V) (V= V.) = [dxay(V,— V)T,

(80)

and describes the uniform (global) curvature of the poten-
tial, while the R-independent part of the effective potential
results from the simple relation 0,=0,(Ry)=0y(R)
= 7(R)/ %= Vo= V,o+(I3/2) Ag(V,~V,). For a confining po-
tential, i.e., when y,>0, 7,(z) is a 27/ 'y, periodic function
of time ¢. Direct Fourier analysis of expression (76) using the
above relations can be done and shows (see Appendix A)
that the entire energy spectrum necessarily decomposes onto
discrete modes,
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_ —
Ey, =0+ sgn(7o)\Vy(2n+1) (81)

with n=0 a positive integer, yielding a harmonic-
oscillatorlike spectrum for the parabolic quantum-dot model
(in the large magnetic field regime considered here). The
general form of this spectrum will be discussed in the next
section. In contrast, for y,<0, the vortex Green’s function
expressed in the time represenlltion is no more periodic but
decays on a time scale 1/y-7,, due to the cutoff function
1/cosh(y- yot) These lifetime effects associated to negative
Gaussian curvature are clear manifestations of quantum tun-
neling in saddle-point potentials and will be considered in a
future publication where transport properties in high mag-
netic field will be considered.

2. Arbitrary Landau level: Solution for a curved scalar
potential combined with a flat mass potential

For m=1, the structure of Dyson Eq. (67) for graphene
differs from that for the 2DEG case because of the possible
coupling between positive- and negative-energy bands. Two
kinds of processes are actually at work here. First, nonzero
mass potential V, directly couples the two bands, as is clearly
seen from the leading order Green’s function in Eq. (73).
Second and less obviously, higher-order scalar processes can
also induce band mixing. Indeed, the effective off-diagonal
potential in Eq (58) reads in the small I expansion: 7,,(R)
=—V,(R)-m>5 ARV (R)+ ARV (R)+(’)(l ). Thus, even for
an identically Zero mass term (V.=0), positive- and negative-
energy bands are necessarily coupled by the second deriva-
tives of the scalar potential.

For reasons mentioned previously, one cannot analytically
progress for the m=1 Landau levels in case where both
scalar and mass potentials are strongly spatially dependent.
In this section we therefore assume that the scalar potential
varies in space with sizeable local parabolic dispersion while
the mass potential has much smoother spatial variations so
that local derivatives of the mass term are associated to tiny
energy scales (the reversed situation, where the mass poten-
tial variations dominate the ones of the scalar potential, is
considered below in Sec. IV C 3). Since the calculation lead-
ing to the Green’s function for graphene is largely inspired
from the 2DEG’s derivation,?® details are produced in Ap-
pendix B. The solution reads

P [ el TR R 0]
g PYRY (R) == _f |
MR 200 T cosl Ry

% E oitlo—§, (R)+i07]

X1+ e\, (R)]6) \, + €B,(R) Sy 1}
(82)

where the effective energy &, -(R) is given by Eq. (74), and

En (83)

R)= 21—,
R = o R
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0,,(R)

R) = ——77roe.
AR VE,, +[0,(R)]?

(84)

The geometric parameters 7y (R) and 7, (R) have the same
definitions as in Egs. (78) and (79), where 0,(R) is simply
replaced by the effective potential o (R). The function 7 (7)
has also a similar definition as in Eq. (77) now in terms of
¥ (R). Again, the above expression (82) is quite general and
can be used to describe arbitrary disordered (yet smooth)
scalar potentials. A mass contribution may be present but
only with negligible spatial variations for the approximation
to be valid.

Now, in the particular case where the bare scalar potential
is globally quadratic (i.e., has uniform curvature) and the
mass potential is globally uniform, this expression provides
the exact Green’s function. A possible parametrization of
such potentials reads VS(R)=V50+%[(R—R0)~VR]2VS (with
R, chosen as the point where the scalar potential gradient
vanishes) and V_(R)=V,,. The Gaussian curvature of the sca-
lar potential becomes then constant and independent of m,

¥ = LLRV,R V- (xdy V)] (85)

while the R-independent parts of the effective potentials read
ot =5t (Ry)=Vyo+m(I3/2) ARV, and &, ==V,+(13/4)ARV,.
Fourier analysis as done in Appendix A provides a spectrum
of purely discrete energy levels in the presence of 2D-
parabolic scalar potential,

Epy=05, = NEy, +(@,)* +sen(g )0y 2+ 1), (86)
This form of quantization is quite reminiscent of the Fock-
Darwin spectrum for the nonrelativistic 2DEG: besides the
renormalization of Landau levels (labeled by the integer m)
due to the R-independent part of the effective potentials 0,
and 0,,, the linear dependence in the second discrete number
n provides an additional harmonic-oscillatorlike contribu-
tion. As a specific illustration for the case of a circular para-
bolic scalar potential V(r)=V,,+(1/2)Uy(x*+y?) together
with a zero mass term, one gets the following energy spec-
trum:

1 —
E,,=Vyo+ ZZBU()(m +n+ 5) + \/(ﬁQC\e’m)z +(3Uy/2)?,
(87)
that we have already quoted in Eq. (6) in the large (), limit.

3. Arbitrary Landau level: Solution for a flat scalar potential
combined with a curved mass potential

We now consider the alternative solvable case of locally
flat scalar potential, together with a spatially dependent mass
potential that can be locally well described by a quadratic
expansion. Solution of Dyson Eq. (67) can then similarly be
achieved, leading to the Green’s function for m=1,
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400 ei[K”1(R)+i0+]S

gm;)\l;)\z(R) == if

o cos[V,(R)s]

w — l’)—r;(R) + )\]Em
Km(R) oAy

X { cos[6,,(s)]

+i sin[&,,l(s)]@\l’_)\2 (88)

with 6,(5)=[ 77, (R)/ %, (R) ][ 75 (s) ~s]= 55, (R) and

Ku(R) = sgn[w - 77 (R)|[w - 0,(R) > = E4|'"*  (89)

m

if |o-0,(R)|=E,, and
K, (R) = il[w -0}, (R) - E, | (90)

if |o—01(R)|<E,, Details for the derivation of result (88)
can be found in Appendix C. The geometric parameters
v, (R) and 7, (R) in formula (88) are defined as in Eqgs. (78)
and (79) with 7,(R) replaced by -7, (R). Taking the imagi-
nary part of expression (88), we get that the local density of
states vanishes when |w-0"(R)|<E,, meaning that there
are no states within this energy interval.

Now, in the particular case where the bare scalar potential
is globally uniform and the mass potential is globally qua-
dratic, this expression provides the exact Green’s function in
the absence of Landau-level mixing. A possible parametriza-
tion of such potentials reads V(R)=V,, and V_ (R)=V,
+%[(R—R0) -VrJ?V, (with R, chosen as the point where the
mass potential gradient vanishes). The Gaussian curvature of
the mass potential becomes then constant,

4
Y= lf[ﬁf{Vﬁzsz — (xdyV)’] o1

while the R-independent parts of the effective potentials read
ot =V, o= (13/4) ARV, and T, =5, (Ry)==V,g+m(l3/2)ARV..
Fourier analysis as done before implies that the eigenener-
gies w=E,, are determined by the implicit equation «,,
-0,,=sgn(777)Vy (2n+1) [we remind that the dependence on
o is contained in k,,, see Eq. (89)], leading to the following
discrete energy level spectrum in the presence of a parabolic
mass potential,

=05, + NE2 + [, + sgn( Ny 2n+ DP. (92)

The energy dependence with respect to the second discrete
number n is now quite different from the previous Fock-
Darwin-type spectrum in a scalar 2D-parabolic potential, Eq.
(86). As a specific illustration for the case of a circular para-
bolic mass potential V,(r)=(1/2)Uy(x*+y?) together with a
zero scalar term V=0, the discrete energy levels are clearly
anharmonic with respect to n,

Iy

Epn=- 5 Uy = \/(ﬁQC\@)2 + [lﬁUo(m +n+1/2),

(93)

an expression which was already quoted in Eq. (7).
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D. Discussion for arbitrary smooth potentials:
A hierarchy of local energy scales

It is worth emphasizing that for arbitrary two-dimensional
potentials V((R) and V_(R) that are smooth at the scale of the
magnetic length /p, the present vortex formalism turns out to
be extremely useful because it explicitly puts forward the
existence of a hierarchy of local energy scales. Such a hier-
archy can then be exploited to devise successive approxima-
tion schemes, leading to controlled expressions for all physi-
cal observables at finite temperature. This has already been
proved with the concrete example of the temperature-
broadened STS local density of states for the 2DEG (see Sec.
IV of Ref. 26) and the same mechanism holds also in the
case of graphene studied here.

To understand qualitatively the origin of this hierarchy of
local energy scales, it is useful to rewrite the x-bidifferential
operator, Eq. (51), under the equivalent form,

S BV
=2—' iEB c? (94)
p:(]p'

with
C= (éxéy— éyéx)- (95)

The arbitrary large number of derivatives in expression (94)
is clearly an indication of the nonlocal nature of quantum
mechanics. However, and remarkably here, we realize that
nonlocality manifests itself through guasilocality in the vor-
tex representation. This is due to the fact that the nonlocal

electronic Green’s function é(r,r’) can entirely be deter-
mined from the knowledge of the local vortex function
2.(R), see connection formula (54). This quasilocality prop-
erty (which holds independently of the form of the potential
landscape and thus can be seen as resulting uniquely from
the coherent character of the vortex states), allows one to
have a quasilocal quantization view. Clearly, the local
Green’s function g,,(R) depends on the potential matrix ele-
ments 0, (R) via the action of the = product, see Egs.
(67)—(70). As obvious from expression (94), each power of

the bidifferential operator C acting on the functions o,,(R)
and g,(R) generates higher and higher derivatives
15,%g,,(R) of the local Green’s function associated with hi-
erarchy of energy scales of the type /50%7,,(R). These energy
scales get smaller and smaller at increasing p in the case of a
potential smooth at the magnetic length scale, allowing one
to control systematically the calculation.

For instance, leading order expressions (73) and (75) for
the vortex Green’s function were derived assuming that one
can neglect potential curvature terms (associated to the geo-
metric invariants involving second-order spatial derivatives
of the potential). This type of approximation is in fact con-
trolled as long as temperature exceeds the local energy scales
appearing at next to leading order, respectively [¥(R)]"? of
Eq. (78) and [7(R)]"? of Eq. (79). In that case, quantum
effects such as quantization and tunneling are certainly miss-
ing, yet this basic approximation already encodes the struc-
ture of the delocalized edge states far from the regions where
the potential is strongly curved.
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We have seen in Sec. IV C that it is possible to go one
step further by including the curvature contributions [term
p=2 in Eq. (94)], and this reintroduces quantization and tun-
neling in case of confined or open potentials, respectively.
Again, one expects that the refined expressions obtained for
the vortex Green’s function [Egs. (76), (82), and (88) de-
pending on the dominant type of scatterers] encode correctly
the quantum dynamics down to further and even smaller en-
ergy scales associated to geometrical invariants involving
third-order spatial derivatives of the potential.

These considerations show the existence of a hierarchy of
local energy scales formed by the successive spatial deriva-
tives of the potential and hint that the passage from purely
local physics (which is the hallmark of classical mechanics)
to highly nonlocal quantum-mechanical physics (which is the
apanage of highly unstable quantum states) is worked out
gradually when the temperature is progressively decreased.
Therefore, at least in the large magnetic field regime, it is not
needed to diagonalize numerically the random Schrodinger
or Dirac equation in order to calculate precisely physical
quantities, since temperature down to the Kelvin range in
real experiments is not likely to be very small compared to
the tiny energy scales at order llzg (for smooth potentials).
What is neglected in our approximation scheme are contri-
butions of some highly nonlocal quantum states superposi-
tions, which are irrelevant in realistic experiments at finite
temperature.

V. CONNECTION WITH THE DEFORMATION
QUANTIZATION THEORY

A. Deformation quantization theory in classical phase space

Before exploiting the expressions for the Green’s func-
tions derived in Sec. IV, we would like to make important
comments on the structure of the dynamical equations
obeyed by the Green’s functions g,,(R) [general Dyson Eq.
(50) at any magnetic field or Eq. (67) in the absence of
Landau-level mixing at high magnetic field]. After comple-
tion of Ref. 26, we have indeed realized that the
*-bidifferential operator, Eq. (51), involved in these latter
equations has a form analogous to the so-called star product,
which has been the subject of intense research in mathemati-
cal and in high-energy physics because of its fundamental
role in the principles themselves of quantum mechanics.?~#!
More precisely, there have been many attempts to formulate
quantum mechanics from a classical point of view, i.e., as a
theory of functions on phase space, and one suggestion® was
to understand quantization as a deformation of the structure
of (Poisson-Lie) algebra of classical observables. The
fi-deformation theory of the classical mechanics relies on the
introduction of a star product,

hoe. <.
*; = exp[ iE(&X&pX - apxax)] (96)

in place of the usual product between phase-space functions.
Here, x and p, are, respectively, the position and momentum
which are canonically conjugate variables. We discuss first
here the quantization for a particle in one dimension in the
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absence of a magnetic field (in two dimensions, classical
phase space is four dimensional, see discussion in Sec. V B).
As a key principle, the entire quantum dynamics is encapsu-
lated in the noncommutative operator, Eq. (96), which turns
out to be the unique associative pseudodifferential deforma-
tion of the ordinary product. Within the deformation quanti-
zation theory, the Poisson brackets of classical mechanics
between two phase-space functions f(x,p,) and g(x,p,) are
replaced by the Moyal brackets*? defined as commutators (in
the star-product sense) [f,gly=(f*1g—g*4f)/ifi. Obviously,
Moyal brackets are fi-dependent brackets which reduce
smoothly to the Poisson brackets in the limit 77— 0 (hence
the origin of the “deformation” picture).

The deformation quantization approach appears as a gen-
eralization of original ideas put forward by Weyl, Wigner
and Moyal*? (for a short historical account, see paper*® and
references therein), which were aimed at getting a sound
insight into the correspondence principle between classical
and quantum mechanics. The deformation quantization for-
mulation has acquired a clearer mathematical status 30 years
ago with the work of Bayen et al.,*® where its autonomous
and alternative character with respect to other formulations
of quantum mechanics, such as the conventional Hilbert
space and path integral formulations, has been proved (for
the recent status of the theory, see Refs. 40 and 43). Because
the basic continuous structure of the classical phase space is
conceptually kept in the deformation quantization theory,
classical mechanics is easily and transparently recovered via
a smooth transformation, in full contrast to the conventional
operatorial approach of quantum mechanics formulated in a
Hilbert space (spanned by a countable basis of square inte-
grable states) where the emergence of a classical character
from the quantum substrate appears singular and rather chal-
lenging. For this reason, it has been underlined® that the
deformation view is presumably the right way to look at
quantization.

B. Vortex Green’s functions as a mixed phase-space
formulation of quantum mechanics

Now considering explicitly two-dimensional electronic
quantum dynamics in the ordinary 2DEG, the standard de-
formation quantization theory introduces electronic coordi-
nates (x,y) and momenta (p,,p,) as natural variables in a
four-dimensional phase space. In a large magnetic field how-
ever, the electronic classical dynamics consists of a fast cy-
clotron motion, which is centered around a slowly moving
guiding center R=(X,Y). In the popular operatorial language
of quantum mechanics, these two relevant degrees of free-
dom are introduced by decomposing the electronic coordi-
nate operator 1‘=Ii+f7 into a relative position # linked to
cyclotron orbits and a guiding center position li:(f( Y ). It is
well known that the guiding center coordinate operators obey
the commutation rule [X, Y ]=il3, showing analogy with the
canonical quantization rule between the position X and the
conjugate momentum p,. Therefore, the square of the mag-
netic length, lé, plays the role of an effective magnetic field-
dependent Planck’s constant. Moreover, cyclotron motion as-
sociated to the relative circular orbits # leads to quantized
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Landau levels and at very large magnetic fields completely
decouples from the guiding center dynamics.

This physical discussion shows that the canonical descrip-
tion of phase space in terms of electronic coordinates (x,y)
and momenta (p,,p,) becomes awkward in a magnetic field.
Quantum mechanically, this is reflected by the property that
states that are coherent with respect to both positions and
momenta*** cannot be eigenstates of the kinetic part of the
Hamiltonian associated to cyclotron motion, contrary to the
vortex states. With the benefit of hindsight, the program that
we have followed in the string of recent papers’®—2® is pre-
cisely the formulation of deformation quantization in a mixed
phase space associated with the combination of discrete Lan-
dau levels m and two-dimensional guiding center coordinates
(X,Y), which correspond to physical space. For the 2DEG,
this decomposition is naturally encoded within the vortex
states W, g of Eq. (10), whose coherent character with re-
spect to the guiding center R brings a doubly continuous
parametrization of phase space, while the discrete quantum
number is associated to a standard quantization of cyclotron
motion.

The general equation of motion at any magnetic field for
graphene is then given by Eq. (50), and simplifies into a
dynamics in two-dimensional phase space (X,Y) given by
Dyson Eq. (67) in the large magnetic field regime, as the
cyclotron motion giving rise to Landau levels exactly de-
couples from the vortex (or guiding center) motion. In that
case, Dyson equation has precisely the form of a star prod-
uct, see the obvious connection between the x operator, Eq.
(51), of the vortex formalism and the *; product, Eq. (96), of
the deformation quantization theory. High magnetic field dy-
namics is thus isomorphous to a one-dimensional
Schrédinger (for the ordinary 2DEG) or Dirac equation (for
graphene) with conjugate variables X and Y. More specifi-
cally, if we consider the lowest Landau level (allowing one
to forget the spinorial structure proper to graphene), Dyson
Eq. (67) is equivalent to the standard operatorial formulation

with the Hamiltonian H =170()2 , f/), where the effective poten-
tial 04(R) is given by Eq. (65). In that case, dynamics results

from the commutation rule [X, IA/]=i1123 so that kineticlike en-
ergy terms emerge from the identification of the conjugate

momentum to X with ﬁx=ﬁ1} / lé. We emphasize that this
derivation is free of the ambiguities found in the path inte-
gral formulation®® and reproduces the lowest Landau projec-
tion method pioneered for the 2DEG by Girvin and Jach.?*3°
The vortex formulation of phase space is however more gen-
eral, because it allows to consider not only the projection
onto arbitrary Landau levels at infinite magnetic field, but
also the coupling between them for arbitrary magnetic field.

Therefore, the semicoherent character of the vortex repre-
sentation offers a local quantization view in high magnetic
field because phase space reduces to the physical space of
guiding center coordinates R. When considering the motion
in complicated potential landscapes, this leads to the exis-
tence of a hierarchy of local energy scales, allowing one to
describe smoothly the crossover from the semiclassical guid-
ing center motion at high temperature to the fully quantum
dynamics at very low temperature, as discussed in Sec. IV D.
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VI. LOCAL DENSITY OF STATES
A. Generalities

We now use the formalism developed in the previous sec-
tions and the resulting expressions for the graphene Green’s
function to investigate the characteristic features of the local
density of states (LDoS). The goal of Sec. VI is to show that
a lot of information concerning the different potentials at
play in graphene can be extracted from the widths and shapes
of the LDoS peaks in a high magnetic field.

The LDoS is related to the electronic Green’s function via
the formula

1 A
p(r,w) =— —Im Tr G(r,r,w). (97)
T

Note that with Eq. (54), we can directly write the LDoS in
terms of the modified local Green’s function g, ,.m,,(R).
In the case where the modified Green’s function is diagonal
with respect to the Landau-level quantum number, i.e.,
Znyxnyimyn,(R) =8 8 n o, (R), we have to evaluate the
action of the exponential differential operator onto the prod-
uct of two vortex functions with identical Landau level, as
done in Eq. (63). We therefore find that the LDoS [Eq. (97)]
can quite generally be written in the absence of Landau-level
mixing as

4 &R 13
p(r,0) == —Im f — [KO(R -1)g(R) + 52 >

2771123 m=1 \j,\y
XANNK, (R =1) + K, (R = 1)}, (R) |

(98)

where the kernel K,,,(R) has been previously obtained in Eq.
(63). We have also taken into account here the spin and val-
ley degeneracies, which provide an overall prefactor of 4
when evaluating the trace in formula (97).

In actual experimental conditions, one never has a direct
access to the zero-temperature LDoS, due to an extrinsic
smearing occasioned by the finite temperature 7. The STS
spectra at fixed energy e are proportional to the temperature
broadened LDoS,

p>B(r,e,T) = - f dwp(r,o)np(w-¢), (99)

where ny(w)=-1/[4T cosh?(w/2T)] is the derivative of the
Fermi-Dirac function.

B. LDoS for locally flat potentials
1. General expression

The leading order result for the vortex Green’s function,
Egs. (73) and (75), applies when the disorder potential is
locally flat on the scale /3. Mathematically, this approxima-
tion is controlled for temperatures larger than the smaller
energy scales associated to local Gaussian curvature, such as
Eq. (78). In that case, using previous formulas (98) and (99),
we get
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2

PST(r,6,T) =~ 4 j 4R [n;[e ~ &R+ 1)K(R)
27ly

14
#3323 nile- £, R+ 1))

m=1 e=*

X{[1+eB,(R+r)]K,(R)

+[1- 6ﬂm(R+r)]Km_1(R)}], (100)

where the kernel K, (R), the effective energy &, -(R), and
the electron-hole asymmetry parameter 3,,(R) are given, re-
spectively, by Egs. (63), (74), and (84). The kernels K,,(R)
are oscillating yet normalized functions that are localized
around R=0 on a characteristic length scale L,,=Iz\v2m+1,
which one associates with the cyclotron radius. Only for the
lowest Landau level m=0 does this length reduce to the mag-
netic length /.

In principle, one cannot strictly set the temperature to zero
in Eq. (100) unless the effective potentials 0, (R) and o, (R)
which compose the function &, (R) are globally flat. Indeed,
for arbitrary potentials o, (R) and 0, (R), it is important to
have in mind that expression (100) overlooks the fine struc-
ture of the zero-temperature local density of states, which
requires to take into account all existing spatial derivatives of
these potentials &, (R) [see Eq. (67)]. Nevertheless, it cap-
tures accurately the shape of the LDoS when the temperature
exceeds the (smaller) energy scales involving second and
higher derivatives (in orthogonal directions) of the potentials
17:*; (R) associated to curvature. Basically, under the inequali-
ties L,,|V&,. (r)|>T> ]y, (R)|, one expects that the tem-
perature gives a small contribution to the smearing of the
LDoS in comparison to the intrinsic smearing generated by
the spatial dispersion of the function ¢, (R+r), (i.e., by the
potential gradients) when performing the integration over the
vortex position R in Eq. (100).

2. High-temperature regime

At very high temperatures such that 7> Lm|V§m,€(r) , the
spatial dependence on the vortex position R inside the Fermi
derivative function can be neglected [here, we also disregard
the R dependence of the smooth function B,,(R+r)], so that
expression (100) simplifies into:

=4

27l

pS18(r,e,T) =

X\ nile - &)1+ 2 X nile - &, ()]

m=1 e=*+
(101)

This semiclassical expression provides LDoS peaks of width
2T that are centered around the effective Landau-level ener-
gies &, .(r) given by Eq. (74). In this regime, the thermal
broadening of the LDoS peaks is thus independent of the
Landau-level index, and the electron and hole peaks are char-
acterized by the same heights. At lower temperatures, we
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now show that different linewidths, line shapes, and particle-
hole asymmetries are generated in the LDoS spectra, provid-
ing additional insight into the underlying scalar and mass
potentials.

3. Low-temperature regime for potentials smooth
on the cyclotron radius L,

- ~m

the Fermi function derivative must be kept. We first assume
here that the potential is well approximated by its first-order
gradient on the whole cyclotron orbit of radius L,, i.e.,
EndR+r)=¢, (r)+R. V¢, (r). We can then perform ana-
lytically the Gaussian integral over R in Eq. (100) and obtain
the intuitive result for the zero-temperature LDoS (see Ap-

pendix D),
ol [w—g()(r)]z
p Fg’c(l‘)

e E E Flm( ){1"'5,8er2”{‘1’ fme(l'):|

2m l e=* FZOC( )

1- eﬁm 2 w— gm,e(r)
oI - 1)!Hm“{ [edr) ”

w me( ) 2
XCXP{_[ Fl{i( )r :| }i|

with Fl“ (r)=13|VE, r)| the local energy scale associated to
the drift motion and H n(x) the mth Hermite polynomial. In
order to keep the above expression compact, we have only
written the zero-temperature local density of states, but the
STS local density of states is readily obtained from Eq. (99).
The above expression is quite reminiscent of the expression
that can be obtained with the usual Landau states, of course
generalized to the two-component spinorial structure proper
to graphene, and taking into account that the potential land-
scape varies slowly in space [obvious from the r dependence
of the width I''?’(r)]. In Sec. VIC, we will further analyze
expression ( 102) when discussing recent STS experiments.

We note yet that for a given disordered potential land-
scape Eq. (102) breaks down for sufficiently large quantum
numbers m because very wide cyclotron orbits of radius L,
~ \2mlB>lB may explore random spatial variations in the
potential. In that case, the more general expression (100) is
still valid, provided that the potential is smooth on the
smaller scale I (this is always the case at high enough mag-
netic field). This regime is now investigated.

NS
r,®
p 22| T%(r)

(102)

4. Low-temperature regime for potentials with random
spatial fluctuations on the cyclotron radius L,

In cases where the disorder potential fluctuates spatially
on the scale of cyclotron radius L,,, formula (102) is clearly
invalid, as the linearization of the effective vortex potential
&,.(R+r) cannot be made anymore. When spatial variations
along the trajectory remain however smooth at the smaller
scale I, general expression (100) for locally flat potentials is
the one to consider. In order to get some analytical insight,
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we compute here a disorder averaging of the LDoS. This
procedure is clearly valid in two cases: (i) for the LDoS at
very large Landau index m> 1, as very wide cyclotron radius
L,, can explore random configurations of the scalar disor-
dered potential V(r). Because of the large quantum numbers
involved here, one should recover a semiclassical limit, as
we will see; (ii) for any m and finite magnetic length (the
fully quantum regime), if one rather considers the sample
averaged DoS. We stress beforehand that the LDoS at small
m does not show self-averaging. In both situations, the com-
puted averaged density of states is a spatial-independent
quantity. The calculation performed in Appendix D provides
the following result:

PP (w) = p(r, )

1 4 1 ( ) )2
N .otX I
" 2ty | TR TP TS
w—€E,, 2
+ E E_Ei I‘Dosexp{ ( FII?::DS ) }:|

(103)

FDOS

m

2
f dzl‘eiq'er(r) +2Km—l (l')

(104)

with the characteristic energy width

2
= | s

given by

bl

where S(gq) is the Fourier transform of the potential correla-
tion function (see Appendix D for details) and K,,(R) was
defined in Eq. (63) (we write here K_; =K, in order for the
above formula to apply at m=0 as well). In order to simplify
the derivation, we have assumed that the antisymmetric part
V, of the total potential V can be neglected compared to the
diagonal scalar component V.

Equation (104) can be first analyzed in the following
semiclassical limit, [;—0 and m> 1, while keeping the cy-
clotron radius L,,=\2m+ 11 fixed. In that case, the function
K,,(r), which is peaked at the distance |r|=+2mly=L,, with
a width Ip, becomes a delta function along the cyclotron
radius, K,,(r)= 5(|r| L,,). In this semiclassical regime,
we recover results derived by other means? for the 2DEG,
namely,

adg, f dq25(q)

FDOS 2=f J L 2 _’
[ m ] 2 6])| 0( m4)| Wsz o \”/n_/l
(105)

where the asymptotic limit of the zeroth-order Bessel func-
tion J, was used, assuming the disorder to be random on the
scale L,,, so that the integral in Eq. (105) is dominated by its
tail. We note that our expression (104) is more general than
the above result (105) because it also describes the averaged
density of states for any m (including the strong quantum
regime at finite /). Clearly, our calculation incorporates
wave function spreads on the scale [z, a purely quantum
length scale which has completely disappeared from the
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semiclassical result [Eq. (105)]. In all cases (semiclassical or
quantum dynamics), the general trend is that the cyclotron
motion averages out the local potential at increasing radius
L,,, so that the width of the DoS decreases with m. This
effect is discussed now in more detail at the light of recent
LDoS measurements.

C. Interpretation of the STS experiments

Recent experimental works by Li et al.'' and Miller et
al.'? have investigated by STS the LDoS in graphene at high
magnetic field and have revealed the relativistic nature of the
Landau levels in the measured energy spectrum. Besides this
precise verification of the sequence of graphene Landau lev-
els at the energies %), \Vm, one can note several other strik-
ing aspects of the data. At a given large magnetic field and
for a fixed tip position, the width of the mth Landau-level
peak in the LDoS pSTS(e,r) is seen to grow as ym with
increasing Landau-level index m, as demonstrated in Ref. 11
and also observed in Ref. 12. At the same time, the LDoS
peaks display an energy dispersion as a function of tip posi-
tion, reflecting the underlying effective potential, see the dis-
cussion in Ref. 12. Quite contrary to the fixed tip LDoS
peaks, the energy spread of the spatially averaged mth Lan-
dau level decreases with m. This effect is easily understood
on general grounds by the smearing of the local potential by
larger and larger cyclotron orbits, as discussed above and
embodied in the DoS width T2 of Eq. (104). In particular,
the semiclassical limit (m>1,l;—0), which does not com-
pletely apply to the experiment for which Landau levels are
only observed up to m=7, gives the result [P o4, as
first derived by Raikh and Shahbazyan®® for the nonrelativ-
istic 2DEG, showing a clear decrease in the width with m.

As an illustration of truly quantum smearing of the cyclo-
tron motion at finite / for the first few Landau levels, which
corresponds more to the actual experimental situation at high
magnetic fields, we have plotted in Fig. 1 for m <4 the ef-
fective potential in graphene obtained from Egs. (64) and
(74) in the case of negligible band mixing [i.e., |7, (r)|
<hQ.],

1
& +(r)=E, + > f V(K (r—n) +K,_ (r- 5]

(106)

as a function of tip position r and for a given (scalar) disor-
der realization, obtained as a superposition of localized long-
range potentials. The upper panel of Fig. 1, which corre-
sponds to a (unidimensional) disordered scalar potential
landscape V(r) smooth on the scale [, shows that the effec-
tive potential &, ,(r) follows precisely the bare disorder po-
tential for the lowest Landau level m=0, yet presents some
moderate deviations for the following levels, illustrating the
small averaging present on the larger scale of the quantum
cyclotron radius L,,=y2m+ 1lg. In contrast, the lower panel
of Fig. 1 presents the situation of a disordered scalar poten-
tial landscape V,(r) which has spatial variations comparable
to I [we stress again that the effective potential given by
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FIG. 1. (Color online) Dimensionless effective potential
£ (0)/18Q =\m+5} (r)/#Q, from Eq. (106) as a function of lin-
ear tip position r/l for the first Landau levels m=0,1,2,3 (bottom
to_top in full lines), and compared to the bare potential energy
Vm+V(r)/hQ,. given by the dashed lines. The top panel corre-
sponds to smooth disorder while the bottom one has stronger varia-
tions in the potential on the scale /5 (see the relative axes).

Eq. (74)—and thus also by Eq. (106)—has a truly nonpertur-
bative character in [;]. In that case, we can notice two ef-
fects: (i) the effective potential &, .(r) shows important
quantitative deviations from the bare one already in the low-
est Landau level m=0; (ii) at increasing m >0, stronger and
stronger averaging effects take place, so that the effective
potential &, ,(r) rapidly flattens out. As a consequence, the
typical energy width of the effective potentials £, .(r) as a
function of position r clearly decreases with growing m. This
effect is clearly seen in the STS data of Ref. 12 for graphene
and can be also recognized in recent measurements on stan-
dard 2DEGs by Hashimoto et al.”

We now discuss in more detail the STS spectra taken at
fixed tip position, presented in the experimental papers!!:!?
that showed a broadening of the Landau levels with a \m
scaling at increasing m. At high temperatures, such that T
> L, |V, +(r)|, the broadening has a purely thermal origin,
with a fixed width set by 7 and an exponential line shape
(given by the Fermi function derivative). It is worth noting
that the apparent increase with m of the heights of the LDoS
peaks in graphene'"'? is solely due to the collapse of Landau
levels, E,,,—E,, > 1/Vm at large m, yet the underlying Lan-
dau peaks show a width insensitive to m.

Contrary to the discussion given in Ref. 11, we emphasize
that results of disorder averaged density of states, such as our
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FIG. 2. (Color online) Energy-dependent STS spectra for the
local density of states pS™S(r, &, T) at fixed tip position r from Egs.
(99) and (102) in units of 4/ (2771123) and as a function of energy ¢ for
several temperatures 7/££).=0.03,0.05,0.07,0.09 (top to bottom).
Here the local energy scale associated to the drift motion in the
lowest Landau level is Ty(r)=15|VV,|=0.0240,. At the lowest
given temperature, the smearing with increasing m of the Landau-
level peaks is characterized by a local energy width which roughly
grows as Vm (thermal smearing provides still some dominant
contribution).

Eq. (105) or the formula obtained, e.g., in Ref. 23, do not
apply to account for the width of the STS peaks at fixed
position, for which an expression for the local density of
states, such as Eq. (100) and (102), should instead be con-
sidered. In fact, the energy spread of the Landau-level peaks
observed experimentally at low temperature in the LDoS can
be easily understood to originate from wave-function broad-
ening. Indeed, in formula (102) for instance, the polynomial
|H,,(x)|> being of order 2m, the squared wave function f(x)
= |H,,,(x)|2.e"‘2 turns out to be spread on a characteristic scale

X,,=\2m+1. We note that in Fig. 2 of Ref. 46, a square-root
dependence of the Landau-level widths with the Landau-
level index can also be observed at zero-temperature (the
oscillatory substructure of each Landau-level peak disap-
pears when including a small thermal smearing, as per-
formed here). Turning to the LDoS expression (102), one
sees that the effective energy width of the mth Landau-level
peak is roughly given by the local energy scale
V2m+11g|VV(r)|=L,,|VV(r)| [here we have used the fact
that the effective potential &, . (r) roughly follows the bare
potential V(r)], which scales as ym as observed in the
experiment.!! This effect can be checked by a simple numeri-
cal evaluation of Eq. (102), taking into account the convolu-
tion with a thermal smearing as resulting from Eq. (99) for
the STS local density of states. The obtained result for the
sequence of LDoS peaks is shown in Fig. 2 for different
temperatures. At temperatures comparable to Ff)“(r)
~15|VV,|, quantum smearing due to the drift motion, which
is encoded by the spatial dependence of the kernel K,,(R) in
the general expression (100), or by the Hermite wave func-
tions in the special case of a globally flat potential [see Eq.
(102)], starts to appear. The growth of the energy width of
the LDoS peaks at increasing Landau-level index m is visible
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for the lowest chosen temperature in Fig. 2. In that case, one
also sees a clear decrease in the heights of the LDoS peak
with m, as observed experimentally.”-!"!> Because the total
smearing of the Landau levels depends both on thermal and
intrinsic wave functiog broadening, the linewidth is only
roughly behaving as vm.

Finally, we address the question of the Landau-levels line
shape in the LDoS. In experiment of Ref. 11, it has been
pointed out that Lorentzian fits are significantly better than
Gaussian ones to account quantitatively for the broadening
of the LDoS peaks. On the other hand, in experiment by
Miller et al.'? the line shape has been modeled by a convo-
lution of Lorentzians and Gaussians to include extrinsic ori-
gins of broadening induced by temperature and instrumental
resolution. On theoretical grounds, thermal broadening im-
plies exponential line shapes (in between Lorentzians and
Gaussians), while intrinsic wave function broadening of drift
states (for nonvanishing local potential gradients) leads to
Gaussian-type energy decay. We also note that spectra taken
in regions of small potential gradients involve intrinsic ex-
ponential linewidth due to curvature effects, see Ref. 31 for a
discussion of the lowest Landau-level LDoS peak in the
2DEG. Therefore, it is difficult in general to disentangle the
different contributions from the experiment, and systematic
studies in temperature and as function of tip position, would
be required to settle precisely this issue.

VII. CONCLUSION

In this paper, we have extended to the graphene case a
Green’s-function formalism well suited to study the mecha-
nism of lifting of the Landau-level degeneracy by a smooth
potential landscape at high magnetic fields, which was origi-
nally developed for the two-dimensional electron gases. The
whole formalism relies on the use of a particular representa-
tion of semicoherent states, which are eigenstates of the ki-
netic part of the Hamiltonian. These so-called vortex states in
the 2DEG case, or graphene vortex states in the graphene
case, are both characterized by an integer topological quan-
tum number m, related to the vortex circulation and giving
rise to the Landau quantization of the orbital motion, and by
a doubly continuous quantum number R, corresponding to
the location of the vortexlike phase singularities of the elec-
tronic wave function and characterizing the huge degeneracy
of the Landau levels in the absence of disorder. The coherent
states character with respect to the degeneracy quantum
number R allows one to project the electron dynamics onto
this overcomplete representation of states, which rigorously
extends to quantum mechanics the classical guiding-center
picture.

In a first stage, we have derived the exact matrix elements
for smooth arbitrary scalar and mass potentials, as well as for
off-diagonal smooth potentials related to ripples in graphene.
The particular form of these matrix elements has revealed the
different processes leading to Landau-level mixing and cou-
pling between electron and hole bands. We have shown that
at high magnetic field, when the Landau-level mixing can be
safely neglected, a mixing between the hole and electron
energy bands is unavoidably induced by second-order de-
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rivatives of the scalar potential, independently of the pres-
ence or not of a mass potential. We have been able to derive
in this high magnetic field regime exact expressions for the
electronic Green’s function in the presence either of an arbi-
trary quadratic scalar potential or an arbitrary quadratic mass
potential.

Besides affording the derivation of unique Green’s func-
tion solutions valid for closed and open quadratic potentials
which underline the dual correspondence between quantiza-
tion effects and tunneling effects, we have emphasized that
the semicoherent vortex representation offers a quasilocal
perspective of the quantization process closely related to the
deformation view of the classical phase-space mechanics, a
property which turns out to be essential to capture the tran-
sition from the nonlocal quantum world to the local classical
world. Furthermore, the vortex representation has revealed a
hierarchy of local energy scales formed by the successive
derivatives of the potential and thus ordered by their degree
of nonlocality. As a result, quantum features associated with
the lowest derivatives of the potential appear to be the most
robust against the inelastic effects. We have emphasized that
the consideration of a finite temperature allows one to disre-
gard the smallest inaccessible energy scales and thus to de-
vise successive approximation schemes for an arbitrary
smooth potential.

Within this spirit, we have derived controlled analytical
expressions for the local density of states in graphene valid
at high magnetic field in the presence of smooth arbitrary
scalar and mass potentials within different temperature re-
gimes. We have identified the most relevant mechanism of
intrinsic broadening of the LDoS peaks and have shown that
a lot of information on the different potentials at play in
graphene can be extracted from the experimental LDoS spec-
tra performed at high magnetic field. Finally, we have been
able to explain a few of the experimental findings, e.g., con-
cerning the scaling of the LDoS peaks with the Landau-level
index, recently observed!!'? in scanning tunneling spectros-
copy of graphene.
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APPENDIX A: ENERGY SPECTRUM FOR CLOSED
QUADRATIC POTENTIALS

In this appendix, we show how the energy spectrum for a
confining quadratic potential (with a positive Gaussian cur-
vature) can be determined from a retarded Green’s-function
expression such as given, e.g., by Eq. (76). For v,(R)>0,
the function

LR 7R 700
—f—
cos[Vyo(R)7]

is periodic in time with the period T=27/y,(R) at fixed R.
We thus expand it in a Fourier series

WR,1) = (A1)
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+0o0

WR.0)= 2 a,(R)e P70k
p=—>

(A2)

and insert expression (A2) into Eq. (76) to straightforwardly
get after integration over time,

+00

. a,(R)
go(R) = 2 = ] . (A3)
p=—n ®—wy(R) = p\y(R) +i0
with w(R)=0y(R) = 79(R)/ y(R).
The Fourier coefficients a,(R) are given by
- N
[va(R) (27 7®) R
ap(R)=lM—2 dIW(R, )P 0 (A4)
21T 0
1=(=1)? w2 —ip(R)tan 6
D=y [ e

2m a2 cos 0

with p(R)=7,(R) /[ v,(R)]*?. We rewrite the following func-
tion appearing in the integrand of integral (A5) as

e—ip(R)tan 0 ® eiﬁ 6210
cos 6 2¢0 1+ 2P| 7 2p(R) 1+ e (A6)
® e—if) -2i6
=2¢7 P mexp Zp(R)m . (A7)

It is then convenient to introduce the identity (see, e.g., Ref.
47)

+o0
1 exp( = ) =3 1,00, (A8)
=1 \z=1) 55

where L,(x) is the Laguerre polynomial of degree n. Formula
(A8) is usually defined for |z] <1 but it can be checked that
it still holds for z=e'® with ¢ #2;j (j a positive or negative
integer) at x>0. Indeed, using the asymptotic behavior of
the Laguerre polynomials at large n and x>0,

Cla{eg)-3)
Ln(x)zmcos 2 xn+5 —Z ,  (A9)

we note that the series on the right-hand side of Eq. (A8) is
semiconvergent (this can be established using Abel’s test).
On the other hand, for x<<0, we have

—x/2
L R—— (2\/|x|(n+l>> (A10)
2\ ar(nx[) 4 P 2/))°

meaning that the series on the right-hand side of Eq. (A8) is
divergent for x<<0 and z=e¢'%.

Using Eq. (A6) or (A7), and Eq. (A8) by writing
x=2|p(R)| and z=-e"2X depending on the sign of the
quantity p(R) [we introduce the short-hand notation y
=sgn p(R)], we can easily perform the integration over the
angle 6 in Eq. (A5) and find

a,(R) =2(-1)"e"P®IL, (2] p(R)])

L,(x) =

(A11)

for p=x(2n+1) and a,(R)=0 for any values of p+# x(2n
+1). Therefore, only the terms with p=x(2n+1) remain in
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expression (A3), where n is a positive integer and y= * 1 is
an index determining if the region is locally convex or con-
cave.

Now, for the particular case of purely quadratic scalar and
mass potentials, the poles of the Green’s function (A3) are R
independent, and thus directly yield the energy spectrum, Eq.
(81), with the set of quantum numbers (m,n) if the quadratic
potential V-V, is convex, i.e., confining (y=+1 in this
case).

APPENDIX B: SOLUTION FOR A LOCALLY
QUADRATIC SCALAR POTENTIAL V;

In this appendix, we solve the equations of motion, Eq.
(67), in the regime where we can consider that the effective
potential 7, (R) has a negligible spatial dispersion and that
the effective potential 0, (R) can be locally described up to
its second-order derivatives (i.e., it is locally written as a
two-dimensional quadratic potential). These assumptions
turn out to be exactly fulfilled in the particular case of a
globally quadratic scalar potential V(R) and a constant mass
term V_, for which the matrix elements at high magnetic field
read for m=1,

2

5(R) = V.(R) + m AV, (R). (B1)
12
7, (R)=—V,+ ZBARVS(R) = cst. (B2)

Using the explicit form, Eq. (51), of the * operator and the
fact that 0, (R) is a quadratic function (so that all its deriva-
tives higher than 3 vanish) and that 0, (R) is quasi-
independent of R, Eq. (67) becomes

(0= 0,,(R) =, 5, +i07)8n 0, (R) = 8y n, + 08 n,(R)
+ lg[axvmﬂy = Iy0,,9x)8man 0, (R) = g[( YOm) Fx
+ (3303 Iy = 2(Jxdy D) IxIy 18 mn o, (R). (B3)
To solve Eq. (B3), we introduce an arbitrary reference point
RO and write gm;)\l;}\z(R) =fm;)\l;)\2[E(R)] with E(R)=l7:—n(R)
-0, (Rg). Substituting this form into Eq. (B3), we get the
system of differential equations,

d? d .
B+ M) 5 + Yo e~ E+ 0= 0, (Ro) ~ By, + 10+}

Xfm;)\l;)\z(E) - lefm;—)\l;)\z(E) = 5)\1,)\2’ (B4)
where the geometric coefficients ¥, and 7, have the same
definitions as in Egs. (78) and (79) [with 0y(R) replaced by
the effective potential 0;(R)], and are expressed at the ref-
erence point R;. In the derivation of Eq. (B4), we have used
the relation 7, (R)=17, + v, [0 (R)-0. (Ry)] which holds for
any quadratic potential 0, (R). We then go to Fourier space
by writing
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fm;)\l;)\z(E) =JdTFm;)\l;)\2(T)e_iET (BS)

and obtain a system of coupled first-order differential equa-
tions for F,

d
i(1+ y;,ql)d— +iyp = T+ 0= 03(Rg) = E, ) +i0°
T
XFm;)\l;)\z(T) - 5:"Fm;—)\l;)\2(7-) = 5(7')5)\1,)\2- (B6)
Introducing into Eq. (B6) the (last) change in function,
Iy o J1(7)]

F (1) = P LT, RO Mgl
VI+ 9y 7
(B7)
with
1
(1) = /——+arctan(v/y_;7'), (B8)

N Ym
we arrive at a simple linear system of two coupled first-order

inhomogeneous differential equations with constant coeffi-
cients,

|:i% —\E,, + i0+:|h>\;)\(t) - %h—k;)\(t) =], (BY)

d
|:l; + )\Em + l()+:| h_}\;)\(t) - l’j;nh)\;)\(t) = O (BIO)
with

1
(1) = —=tan(\ y,1). (B11)
N Yim

Note that &r(1)]=8(r) if y,=0 and 1)]=2,8(
—nm/ V’T:“n) if 7 >0. Let us consider for the time being the
case ¥, =0. The solution of the system of Egs. (B9) and
(B10) leading to a well-defined integral (B5) can then be
readily derived and reads

( hy\ (1) ) __ 60 { (1 +\ay, )e_i,\’Efn+[ﬁ;1]2
h)\;_)\(l) 2 Bm

(' ;)?} (B12

The expressions for the coefficients «,, and 3,, are given in
Egs. (83) and (84). Coming back to the original functions
&ma 2, (R) and setting R=R,, we get the compact expression
for the modified retarded Green’s function written in Eq.
(82). For the case 7y, >0, it is important to realize that the
relevant variable is the time ¢, not the variable 7 (whereas it
is possible to work indifferently with 7 or 7 for y;, <0). It can
be checked that integral (82) is well defined as well for y'
=0 as for y,,>0 [in the latter case the infinitesimal quantity
i0* is crucial while it does not help to make the integral
convergent when expressing the solution under the form of
an integral over 7 as within Eq. (B5)].
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APPENDIX C: SOLUTION FOR A LOCALLY
QUADRATIC MASS TERM V,

In this appendix, we solve the equations of motion, Eq.
(67), in the regime where we can consider that the effective
potential o, (R) has a negligible spatial dispersion and that
the effective potential o, (R) can be locally described up to
its second-order derivatives. This regime contains as a par-
ticular case the situation where the scalar potential V(R) is
globally constant in space and the mass potential V_(R) has a
quadratic dependence on R. In this particular case, we obvi-
ously get exactly that 0, (R)=cst and 0, (R) depends qua-
dratically on the variable R,

2
75 (R) = V,(R) - %BARVZ(R) = cst, (C1)

2
5o R) = V.(R) - m 2 AV, (R). (©2)

In the regime considered in this appendix, Eq. (67) becomes

((’-’ - 17:;1 - Em,)\l + i0+)§m;}\l;)\2(R) = 6)\1,)\2 + %(R)gm;—)\l;}\z(R)
Ly o Ly o
+ 15[5xvm&y - aYUm&X]gm;—)\l;)\z(R) - g[(&ivm)di

+ (50, Jy = 2(Ixy8,) Ixdy]Zmen 0, (R).- (C3)

As in Appendix B, we introduce a reference point R,. It
can then be guessed that the functions gm;)\l;)\z(R) are func-
tionals of the potential E(R)=0, (Ry)-0,(R), i.e., we can
write g0, (R)=fy o [E(R)]. The contributions in Eq.
(C3) involving the first-order derivatives of the function
U, (R) then vanish. Furthermore, we shall suppose that the
equality (71) still holds in the present studied case, what can
be justified a posteriori. The problem thus reduces to the
resolution of a system of two coupled differential equations.
Indeed, Eq. (C3) yields the system of equations,

_ _d _d —
('YmE + nm)ﬁ + '}ImE -E+ Um(RO) fm;—)\l:)\z(E)

- (U) - ﬁjn - Em,)\] + i0+)fm;)\];)\2(E) == 5)\|,}\2 (C4)
with the coefficients 7y, and 7,, expressed at the position Ry
and given by the formulas (78) and (79) written for the po-

tential -0, (R) in place of 7y(R). Applying the Fourier trans-
formation, Eq. (B5), we arrive at the system,

d
(14 V™) 19,7 = 7,7 4 0, (Ro) | Firy 0, (7)

- (w - 6;:, - Em,)\l + i0+)Fm;)\1;)\2(T) == 5(7-)5)\1,)\2'

(Cs)

Introducing into Eq. (C5) the change in function
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Fr (1) = T TR+ 7 %15 7) il %) 7
(Co)
with
s(7) = /L—_arctan( \/y_;ﬂ'), (C7)
NYim

a simpler system of two coupled differential equations with
constant coefficients comes out,

d
igh—m\(s) — (0 =10, = NE,, + i0")y,\ (s) = = & 7(s)],

(C8)

id%h)\;)\(s) —(w=10,,+ NE,, +i0")h_\\(s)=0. (C9)
Note that, in contrast to the situation encountered in Appen-
dix B, the variable s does not have the meaning of the time
here since it is no more conjugated to the frequency w [this is
the reason why we took care of naming the variable differ-
ently here although the expressions (B11) and (C7) are al-
most identical]. After diagonalization of the 2 X 2 system, we
obtain that the homogeneous solution of Egs. (C8) and (C9)

1S
(mm ) (w—ﬁzﬁwm) .
’ = C ele.S
h—)\;)\(s) - Ky,

+D(w—ajn+>\Em

K,

)e_i"ms (C10)
with C and D two arbitrary constants, and the energy «,,
given by Egs. (89) and (90) (we forget for the time being the
infinitesimal quantity i0*). The inhomogeneous solution of
system of Egs. (C8) and (C9) is then obtained by varying the
constants C(s) and D(s). As a result, we get C'(s)=—D'(s)
=—id(s)/ (2k,,), that is C(s)= Fi6(*s)/(2k,,). Using that

~ dr o
gm;)\];)\z(R) :fdSEFm;M;)\z[T(S)]el[vm(R) vm(RO)]T(S)»

(C11)

the sign = for the functions C(s) and D(s) is then chosen in
such a way that integral (C11) is convergent with the help of
the infinitesimal quantity i0*. Finally, taking the reference
point Ry=R [so that E(R)=0], we arrive at the expression
(88) for the Green’s function, which holds irrespective of the
sign of the coefficient vy, (R).

APPENDIX D: SIMPLIFYING THE LDOS EXPRESSION
FOR LOCALLY FLAT POTENTIALS

In this appendix, we simplify further the expression (100)
for the LDoS (valid for locally flat potentials) in the low-
temperature regime within two different cases: (i) case of a
potential landscape which varies slowly on the scale L,, (Ap-
pendix D 1); (ii) case of a potential landscape which fluctu-
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ates spatially in a random way on the scale L,, (Appendix D
2).
1. Potentials flat on the scale L,

Writing the derivative of the Fermi-Dirac function as

Tt

Tt g, aw)
sinh(7T¥) ’

n1’7[8 - gm,E(R)] == %f_-:o dt
(D1)

and using the linearization of the effective energy ¢, (R
+r)=¢, (r)+R.V¢, (r) in Eq. (100), we can then perform
the Gaussian integral over the vortex position R to get the

LDoS expression,
+% 21 loc 2
4 f di| =6 exp _ )
mJ)_0 4Av

+ = 22{(1+e,8m :

STS
r,e,T) =
p>>(r,e,T) pyr

m 1 e=* ! (9 "
| L (N B
+(1—- it(e=§,, (r))
( E'Bm)(m—l)!ﬁsm_l}l—se
21 loc 2
I (r
Xexp ( ) (D2)
4As s=0

with T, (r)= lB|V§m r)| and assuming temperature is low
enough [1 e, T< Fm °(r)] so that the limit 7— 0 can be taken.
We then perform the integral over time #, and obtain

Ll 1 [ [eeam]
Y (I‘,S,T) ZWIBNW[I‘IOC(I') p{ [ Floc(r) :| }
"

* mzlgrz‘;;m{“”ﬁ'")_'ﬁ

s (l—eB) 1 ot 1
— €Pp _ T
\”1 _s2

(m—=1)!9s"!
s—gmemn }
_A | tmel) . (D3
XeXp{ { Ly (r) 0 (O

Finally, using the following relation*’*8 obeyed by the Her-
mite polynomials H,,(x),

2
| 223 2 e o

yl_s L+s n=0

formula (D3) can be recast in expression (102).
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2. Potentials random on the scale L,

We consider here the limit where the potential has strong
spatial variations along the cyclotron radius, which applies to
the situation of large Landau levels. We assume for simplic-
ity that the antisymmetric part V, of the disorder potential
can be neglected compared to the scalar component V so
that the effective potential given by Eq. (74) reads

gm,i(r) - Em + leZTIV (”)[K (R 77) + Km I(R 7])]

(D5)

where K_; = K, in order for the above expression to apply for
m=0 as well.

The averaging procedure is carried through the isotropic
distribution function S(g) in Fourier space (here ¢=|q|) that
describes the spatial correlations of disorder,

_ 42 .
VI(RDV((R,) =S(R; -R,) = f a S(C])elq'(R‘_Rz)

2m)?
(D6)
so that the spatially averaged LDoS becomes
p"*5(w) = p(r, »)
4 [T d’R <
=——Im
7 J e 2l ng 2 §

X f DVY[Km(R - I‘) + Km—l (R - r)]ei[a)—gm’e(R)]t
1 2 2 -1
Xexp) =5 | R | RS (R, -R,)

X VY(RI)VY(RZ)} 5 (D7)
where the distribution S~! obeys S(R)=[d*nS~'(R—-5)S(7).
Inserting the effective potential, Eq. (D5), and performing
the functional integral over the disorder realizations, we ob-
tain

+% 2
pDOS((D) - _ ilmf d’R 2 E ilw—€E,, ]t
/ﬂ —00

27T1123m =0 25—+

X [Km(R - 1') + Km—l(R — r)]exp{_ _t2[1"DOS 2}

(D8)

where the width I'™°% is given by Eq. (104). The above ex-
pression has obviously become r independent so that the R
integral can be carried using the normalization condition
Jd’RK,,(R)=1. The remaining time integral gives the final
result quoted in Eq. (103).
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